Intel[®] E7501 Chipset Memory Controller Hub (MCH)

Datasheet

July 2003

Document Number: 251927-002

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel[®] E7501 chipset MCH component may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Intel, Intel Xeon, Intel[®] Pentium[®] M Processor and the Intel logo are trademarks or registered trademarks of Intel corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2002, Intel Corporation

int_{el®} Contents

1	Intro	duction	13
	1.1	Terminology	
	1.2 1.3	Reference Documents Intel [®] E7501 Chipset System Architecture	
•			
2	Sign	al Description	
	2.1	System Bus Interface Signals	
	2.2	DDR Channel A Signals	
	2.3	DDR Channel B Signals	
	2.4	Hub Interface_A Signals	
	2.5 2.6	Hub Interface_B Signals Hub Interface_C Signals	
	2.0	Hub Interface_C Signals	
	2.8	Clocks, Reset, Power, and Miscellaneous Signals	
3		ster Description	
•	3.1	Register Terminology	
	3.2	Platform Configuration	
	0.2	3.2.1 Standard PCI Configuration Mechanism	
	3.3	PCI Configuration Cycle Routing	
		3.3.1 Logical PCI Bus 0 Configuration Mechanism	
		3.3.2 Primary PCI Downstream Configuration Mechanism	
		3.3.3 HI_B, HI_C, HI_D Bus Configuration Mechanism	
	3.4	I/O Mapped Registers	
		3.4.1 CONFIG_ADDRESS—Configuration Address Register	
		3.4.2 CONFIG_DATA—Configuration Data Register	
	3.5	Chipset Host Controller Registers (Device 0, Function 0)	
		3.5.1 VID—Vendor Identification Register (D0:F0)	
		3.5.2 DID—Device Identification Register (D0:F0) 3.5.3 PCICMD—PCI Command Register (D0:F0)	
		 3.5.3 PCICMD—PCI Command Register (D0:F0) 3.5.4 PCISTS—PCI Status Register (D0:F0) 	
		3.5.5 RID—Revision Identification Register (D0:F0)	
		3.5.6 SUBC—Sub-Class Code Register (D0:F0)	
		3.5.7 BCC—Base Class Code Register (D0:F0)	
		3.5.8 MLT—Master Latency Timer Register (D0:F0)	
		3.5.9 HDR—Header Type Register (D0:F0)	
		3.5.10 SVID—Subsystem Vendor Identification Register (D0:F0)	
		3.5.11 SID—Subsystem Identification Register (D0:F0)	
		3.5.12 CAPPTR—Capabilities Pointer Register (D0:F0)	
		3.5.13 MCHCAP—MCH Capabilities Structure Register (D0:F0)	
		3.5.14 MCHCFG—MCH Configuration Register (D0:F0)	
		3.5.15 MCHCFGNS—MCH Configuration Register (D0:F0)	
		3.5.16 FDHC—Fixed DRAM Hole Control Register (D0:F0)	
		3.5.17 PAM[6:0]—Programmable Attribute Map Registers (D0:F0)	
		3.5.18 DRB[0:7]—DRAM Row Boundary Register (D0:F0) 3.5.19 DRA[3:0]—DRAM Row Attribute Register (D0:F0)	
		3.5.19 DRA[3:0]—DRAM Row Attribute Register (D0:F0)	

int_{el}®

	3.5.20	DRT—DRAM Timing Register (D0:F0)	
	3.5.21	DRC—DRAM Controller Mode Register (D0:F0)	
	3.5.22	CKDIS—CK / CK# Disable Register (D0:F0)	
	3.5.23	CFGCTL—Configuration Control Register (D0:F0)	52
	3.5.24	SMRAMC—System Management RAM Control Register (D0:F0)	53
	3.5.25	ESMRAMC—Extended System Management RAM Control Register	
		(D0:F0)54	
	3.5.26	TOLM—Top of Low Memory Register (D0:F0)	
		REMAPBASE—Remap Base Address Register (D0:F0)	
	3.5.28	REMAPLIMIT—Remap Limit Address Register (D0:F0)	
		SKPD—Scratchpad Data Register (D0:F0)	
		DVNP—Device Not Present Register (D0:F0)	57
3.6		ASUM Controller Registers	
	•	e 0, Function 1)58	
	3.6.1	VID—Vendor Identification Register (D0:F1)	
	3.6.2	DID—Device Identification Register (D0:F1)	
	3.6.3	PCICMD—PCI Command Register (D0:F1)	
	3.6.4	PCISTS—PCI Status Register (D0:F1)	
	3.6.5	RID—Revision Identification Register (D0:F1)	
	3.6.6	SUBC—Sub-Class Code Register (D0:F1)	
	3.6.7	BCC—Base Class Code Register (D0:F1)	62
	3.6.8	MLT—Master Latency Timer Register (D0:F1)	
	3.6.9	HDR—Header Type Register (D0:F1)	
	3.6.10	SVID—Subsystem Vendor Identification Register (D0:F1)	
	3.6.11	SID—Subsystem Identification Register (D0:F1)	
	3.6.12	FERR_GLOBAL—First Global Error Register (D0:F1)	
	3.6.13	NERR_GLOBAL—Next Global Error Register (D0:F1)	65
	3.6.14	HIA_FERR—HI_A First Error Register (D0:F1)	
	3.6.15	HIA_NERR—HI_A Next Error Register (D0:F1)	
	3.6.16	SCICMD_HIA—SCI Command Register (D0:F1)	
	3.6.17	SMICMD_HIA—SMI Command Register (D0:F1)	69
	3.6.18	SERRCMD_HIA—SERR Command Register (D0:F1)	70
	3.6.19	SYSBUS_FERR—System Bus First Error Register (D0:F1)	71
	3.6.20	SYSBUS_NERR— System Bus Next Error Register (D0:F1)	72
	3.6.21	SCICMD_SYSBUS—SCI Command Register (D0:F1)	73
	3.6.22	SMICMD_SYSBUS—SMI Command Register (D0:F1)	74
	3.6.23	SERRCMD_SYSBUS—SERR Command Register (D0:F1)	75
	3.6.24	DRAM_FERR—DRAM First Error Register (D0:F1)	76
	3.6.25	DRAM_NERR—DRAM Next Error Register (D0:F1)	76
	3.6.26	SCICMD_DRAM—SCI Command Register (D0:F1)	77
	3.6.27	SMICMD_DRAM—SMI Command Register (D0:F1)	77
	3.6.28	SERRCMD_DRAM—SERR Command Register (D0:F1)	78
	3.6.29	DRAM_CELOG_ADD—DRAM First Correctable Memory Error Address	S
		Register (D0:F1)78	
	3.6.30	DRAM_UELOG_ADD—DRAM First Uncorrectable Memory Error Ad-	
		dress Register (D0:F1)79	
	3.6.31	DRAM_CELOG_SYNDROME—DRAM First Correctable Memory Error	
0 7		Syndrome Register (D0:F1)79	
3.7		terface_B PCI-to-PCI Bridge Registers e 2, Function 0)80	
	(Device 3.7.1	VID—Vendor Identification Register (D2:F0)	Q1
	5.7.1	vid venuor identinication register (D2.FU)	01

	3.7.2	DID—Device Identification Register (D2:F0)	
	3.7.3	PCICMD—PCI Command Register (D2:F0)	
	3.7.4	PCISTS—PCI Status Register (D2:F0)	
	3.7.5	RID—Revision Identification Register (D2:F0)	
	3.7.6	SUBC—Sub-Class Code Register (D2:F0)	
	3.7.7	BCC—Base Class Code Register (D2:F0)	
	3.7.8	MLT—Master Latency Timer Register (D2:F0)	
	3.7.9	HDR—Header Type Register (D2:F0)	
	3.7.10	PBUSN—Primary Bus Number Register (D2:F0)	
	3.7.11	SBUSN—Secondary Bus Number Register (D2:F0)	
		SUBUSN—Subordinate Bus Number Register (D2:F0)	
		SMLT—Secondary Bus Master Latency Timer Register (D2:F0)	
		IOBASE—I/O Base Address Register (D2:F0)	
		IOLIMIT—I/O Limit Address Register (D2:F0)	
		SEC_STS—Secondary Status Register (D2:F0)	
		MBASE—Memory Base Address Register (D2:F0)	
		MLIMIT—Memory Limit Address Register (D2:F0)	
		PMBASE—Prefetchable Memory Base Address Register (D2:F0)	
		PMLIMIT—Prefetchable Memory Limit Address Register (D2:F0)	
		BCTRL—Bridge Control Register (D2:F0)	
3.8		erface_B PCI-to-PCI Bridge Error Reporting Registers (Device 2, Func	tion
	1)94	VID—Vendor Identification Register (D2:F1)	05
	3.8.1 3.8.2	DID—Device Identification Register (D2:F1)	
	3.8.3	PCICMD—PCI Command Register (D2:F1)	
	3.8.4	PCISTS—PCI Status Register (D2:F1)	
	3.8.5	RID—Revision Identification Register (D2:F1)	
	3.8.6	SUBC—Sub-Class Code Register (D2:F1)	
	3.8.7	BCC—Base Class Code Register (D2:F1)	
	3.8.8	HDR—Header Type Register (D2:F1)	
	3.8.9	SVID—Subsystem Vendor Identification Register (D2:F1)	
	3.8.10	SID—Subsystem Identification Register (D2:F1)	
	3.8.11	HIB_FERR—HI_B First Error Register (D2:F1)	
		HIB_NERR—HI_B Next Error Register (D2:F1)	
		SERRCMD—SERR Command Register (D2:F1)	
		SMICMD—SMI Command Register (D2:F1)	
		SCICMD—SCI Command Register (D2:F1)	
3.9		erface_C PCI-to-PCI Bridge Registers (Device 3, Function 0, 1)	
3.10		erface_D PCI-to-PCI Bridge Registers (Device 4, Function 0, 1)	
•		ress Map	
4.1	•	Memory Spaces	
	4.1.1	VGA and MDA Memory Spaces	
	4.1.2	PAM Memory Spaces	
	4.1.3	ISA Hole Memory Space	
	4.1.4	TSEG SMM Memory Space	
	4.1.5	I/O APIC Memory Space	
	4.1.6	System Bus Interrupt Memory Space	
	4.1.7	High SMM Memory Space	
	4.1.8	Device 2 Memory and Prefetchable Memory	.113

		Device 3 Memory and Prefetchable Memory Device 4 Memory and Prefetchable Memory HI_A Subtractive Decode	114
4.2		Iress Space	
4.3		расе	
110	4.3.1	System Management Mode (SMM) Memory Range	
	4.3.2	SMM Space Restrictions	
	4.3.3	SMM Space Definition	
4.4	Memory	y Re-Claim Background	
	4.4.1	Memory Re-Mapping	
Fund	ctional E	Description	117
5.1	Process	sor System Bus (PSB)	
	5.1.1	In Order Queue (IOQ) Depth	
	5.1.2	Out of Order Queue (OOQ) Depth	
	5.1.3	System Bus Dynamic Inversion	118
	5.1.4	System Bus Interrupt	
5.2	Hub Int	erface A	119
5.3	Hub Int	erface B, C, and D	119
5.4	Freque	ncy and Bandwidth	119
5.5	System	Memory Controller	
	5.5.1	Single- and Dual-Channel Operation	
	5.5.2	Memory Organization and Configuration	
		5.5.2.1 Configuration Mechanism for DIMMs	
	5.5.3	Memory Address Translation and Decoding	
	5.5.4	DQ-DQS Mapping	
	5.5.5	DDR Clock Generation	
	5.5.6	Refresh	
	5.5.7	Thermal Management	
		5.5.7.1 Enabling Thermal Management	
		5.5.7.2 Thermal Management Parameters	
		5.5.7.3 Thermal Management Duration 5.5.7.4 Thermal Management Lock	
5.6	Power	and Thermal Management	
5.0	5.6.1	Processor Power State Control	
	5.6.2	Sleep State Control	
5.7		g	
5.8		g	
0.0		DRAM ECC	-
	5.8.2	DRAM Scrubbing	
	5.8.3	DRAM Auto-Initialization	
Floo		naracteristics	
6.1		e Maximum Ratings	
6.2		al Characteristics	
6.3		Characteristics	
6.4		aracteristics	
	6.4.1	I/O Interface Signal Groupings	
	6.4.2	DC Characteristics at VCC1_2 = $1.2 \text{ V} \pm 5\%$	
	6.4.3	System Bus Interface DC Characteristics DDR Interface DC Characteristics	
	6.4.4		

Intel[®] E7501 Chipset MCH Datasheet

6

		6.4.5 Hub Interface 2.0	DC Characteristics	135
		6.4.6 Hub Interface 1.5	DC Characteristics	136
		6.4.7 SMBus DC Chara	acteristics	
		6.4.8 Reset and Miscell	laneous CMOS Inputs DC Characteristics	s137
7	Ballo	t and Package Spec	ifications	139
	7.1	Ballout		139
	7.2	Package Specifications		
	7.3		ength Compensation	
			al Package Trace Length Data	
		7.3.2 MCH DDR Chann	nel A Signal Package Trace Length Data.	156
		7.3.3 MCH DDR Chann	nel B Signal Package Trace Length Data.	158
		7.3.4 MCH Hub Interfac	ce_B Signal Package Trace Length Data	160
		7.3.5 MCH Hub Interfac	ce_C Signal Package Trace Length Data	160
		7.3.6 MCH Hub Interfac	ce_D Signal Package Trace Length Data	161
8	Testa	oility		163
	8.1	XORMODE# Usage		
	8.2			

Figures

1-1	Intel [®] E7501 Chipset MCH Platform Block Diagram	
2-1	MCH Interface Signals	
3-1	PAM Registers	45
4-1	System Address Map	
4-2	Detailed Extended Memory Range Address Map	
5-1	Intel [®] E7501 Chipset-Based System Clocking Diagram	
7-1	MCH Ballout (left half of top view)	140
7-2	MCH Ballout (right half of top view)	141
7-3	MCH Ballout (top view)	142
7-4	MCH Package Dimensions (Top View)	
7-5	MCH Package Dimensions (Side View)	
8-1	XOR Test Tree Chain	

Tables

2-1	Signal Description	19
2-2	DDR Channel_A Channel Signals	22
2-3	DDR Channel_B Channel Signals	
2-4	HI _A Signals	24
2-5	HI_B Signals	25
2-6	HI_C Signals	26
2-7	HI_D Signals	27
2-8	Clocks, Reset, Power, and Miscellaneous Signals	
3-1	MCH Logical Configuration Resources	30
3-2	Chipset Host Controller Register Map (D0:F0)	
3-3	PAM Associated Attribute Bits	
3-4	Host RASUM Controller Register Map (HI_A—D0:F1)	58
3-5	Hub Interface_B PCI-to-PCI Bridge Register Map (HI_B—D2:F0)	80
3-6	Hub Interface_B PCI-to-PCI Bridge Error Reporting Register Map (HI_E 94	8—D2:F1)
3-7	Hub Interface_C PCI-to-PCI Bridge Register Map (HI_C—D3:F0)	105
3-8	Hub Interface_C PCI-to-PCI Bridge Error Reporting Register Map (HI_C 106	C—D3:F1)
3-9	Hub Interface_D PCI-to-PCI Bridge Register Map (HI_D—D4:F0)	107
3-10	Hub Interface_D PCI-to-PCI Bridge Error Reporting Register Map (HI_E 108	D—D4:F1)
4-1	SMM Address Range	
5-1	DBI Signals to Data Bit Mapping	
5-2	Memory per DIMM at Each DRAM Density	
5-3	Address Translation and Decoding in Dual-Channel Mode	
5-4	Address Translation and Decoding in Single-Channel Mode	
6-1	Absolute Maximum Ratings	
6-2	DC Characteristics Functional Operating Range	
6-3	System Bus Interface Signal Groups	
6-4	DDR Interface Signal Groups	
6-5	Hub Interface 2.0 (HI_B, HI_C, HI_D) Signal Groups	
6-6	Hub Interface 1.5 (HI_A) Signal Groups	
6-7	SMBus Signal Group	
6-8	Reset and Miscellaneous Signal Group	131

6-9	Operating Condition Supply Voltage	
6-10	System Bus Interface DC Characteristics	
6-11	DDR Interface DC Characteristics	
6-12	Hub Interface 2.0 DC Characteristics	
6-13	Hub Interface 1.5 DC Characteristics	
6-14	SMBus DC Characteristics	
6-15	Reset and Miscellaneous CMOS Inputs DC Characteristics	
7-1	Ballout by Signal Name	
7-2	Example Normalization Table	
7-3	MCH LPKG Data for the System Bus	
7-4	MCH LPKG Data for DDR Channel A	
7-5	MCH LPKG Data for DDR Channel B	
7-6	MCH LPKG Data for Hub Interface_B	
7-7	MCH LPKG Data for Hub Interface_C	
7-8	MCH LPKG Data for Hub Interface_D	
8-1	XOR Chains	

Revision History

Revision	Description	Date
-002	Added support for Intel [®] Pentium [®] M Processor	
	New definition added to the DRT - DRAM Timing Register Bits 18:16, 001 = 0 clocks	
	Table 6-2, "DC Characteristics Functional Operating Range" was updated with new parameters for the Intel [®] Pentium [®] M processor	
	Table 6-9, "Operating Condition Supply Voltage" was updated with new parameters for the Intel [®] Pentium [®] M processor	
	Table 6-9, "Operating Condition Supply Voltage" was updated with new parameters for the Intel [®] Pentium [®] M processor	
-001	Initial Release	December 2002

Intel[®] E7501 Chipset MCH Features

- Processor/Host Bus Support
 - —Intel[®] Xeon[™] processor with 512-KByte L2 cache, Intel[®] Xeon[™] processor with 533 MHz system bus and Intel[®] Pentium[®] M processor with 1 Mbyte of L2 cache
 - 400 MHz or 533 MHz system bus (2X address, 4X data)
 - —Symmetric Multiprocessing Protocol (SMP) for up to two processors at 400 MHz or 533 MHz
 - System bus Dynamic Bus Inversion (DBI)
 - -36-bit system bus addressing
 - —12-deep in-order queue
 - AGTL+ bus driver technology with on-die termination resistors
 - -Parity protection on system bus data, address/request, and response signals
- Memory System
 - Supports 72 bit, Registered, ECC DDR DIMMs
 - —Supports 128 Mb, 256 Mb, and 512 Mb DRAM densities
 - -Cache Latency of 2 and 2.5
- Dual-Channel Support
 - —One 144-bit wide DDR memory port (with ECC)
 - -Peak memory bandwidth of 3.2 GB/s or 4.21 GB/s
 - Supports a maximum of 16 GB of memory using (x4) double-sided DIMMs
 - -DIMMs must be populated in pairs
- Single-Channel Support
 - —One 72-bit wide DDR memory port (with ECC)
 - -Peak memory bandwidth of 1.6 GB/s or 2.1 GB/s
 - —Supports a maximum of 8 GB of memory using (x4) double-sided DIMM

- Hub Interface_A to ICH3-S
 - —266 MB/s point-to-point Hub Interface 1.5 (8 bit) connection to ICH3-S
 - 66 MHz base clock running 4X data transfers
 - -Isochronous support
 - -Parallel termination mode only
 - 64-bit addressing on inbound transactions (maximum 16 GB memory decode space)
- Hub Interface_B, Hub Interface_C, and Hub Interface_D
 - -1 GB/s point-to-point Hub Interface 2.0
 - —66 MHz base clock running 8x (1 GB/s) data transfers
 - Supports snooped and non-snooped inbound accesses
 - -Parallel termination mode only
 - 64-bit addressing on inbound transactions (maximum 16 GB memory decode space)
 - 32-bit outbound addressing supported for PCI-X
- RASUM
 - Provides SEC/DED ECC protection when in single-channel mode of operation, or when accessing x8 DIMMs while in dual-channel mode of operation
 - --- Provides S4EC/D4ED ECC protection when accessing only x4 DIMMs while in dual-channel mode of operation
 - -Hub Interface_A protected by parity
 - -Hub Interface_B-D protected by ECC
 - Memory auto-initialization by hardware implemented to allow main memory to be initialized with valid ECC
 - -Memory scrubbing supported
- Package
 - —1005-ball, 42.5 mm FC-BGA package

This page is intentionally left blank.

Introduction

The Intel[®] E7501 chipset is targeted for the server market, both front-end and general-purpose, low- to mid-range. It is intended to be used with the Intel[®] Xeon[™] processor with 512-KByte L2 cache and the Intel[®] Xeon[™] processor with 533 MHz system bus. The Intel E7501 is also targeted for the applied-computing market. It is intended to be used with the Intel[®] Pentium[®] M processor with one Mbyte of L2 cache. The Intel E7501 chipset consists of three major components: the Intel[®] E7501 Chipset Memory Controller Hub (MCH), the Intel[®] I/O Controller Hub 3-S (ICH3-S), and the PCI/PCI-X 64-bit Hub 2.0 (P64H2). The MCH provides the processor system bus interface, memory controller, hub interface for legacy I/O, and three high-performance hub interfaces for PCI/PCI-X bus expansion.

This document describes the E7501 chipset MCH. The MCH signals, registers, DC electrical characteristics, ballout, package dimensions, and component testability are covered. The major functional blocks of the MCH are described. For detailed descriptions of the other chipset components, refer to the respective component's datasheet. Information on platform design can be found in the *Intel*[®] *Xeon™ Processor and Intel*[®] *E7500 /E7501 Chipset Compatible Platform Design Guide*.

1.1 Terminology

Term	Description
Memory Controller Hub (MCH)	The component that contains the processor interface and system memory interface. It communicates with the I/O Controller Hub (ICH3-S) and the P64H2 over a proprietary interconnect called the Hub Interface (HI).
Intel [®] ICH3-S	The I/O Controller Hub component that contains the primary PCI interface, LPC interface, USB, ATA-100, and other legacy functions. It connects to the MCH's 8-bit Hub Interface 1.5.
Intel [®] P64H2	The Bus Controller Hub component that has a 16-bit hub interconnect on its primary side and two, 64-bit, PCI-X 1.0 interfaces on the secondary side. It connects to one of the MCH's 16-bit Hub Interface 2.0.
Host	This term is used synonymously with processor.
Hub Interface (HI)	The interface that interconnects the MCH to the ICH3-S and P64H2. In this document, HI cycles originating from or destined for the primary PCI interface on the ICH3-S are generally referred to as HI/PCI_A or simply HI_A cycles. Cycles originating from or destined for any target on the second, third or fourth HI interfaces are described as HI_B , HI_C , and HI_D cycles respectively. Be aware that there are two versions of HI used on E7501 chipset: an 8-bit HI 1.5 protocol is implemented on HI_A and a 16-bit HI 2.0 protocol is used for the HI_B, HI_C and HI_D.
Primary PCI or PCI_A	The physical PCI bus that is driven directly by the ICH3-S component. It supports 5 V, 32-bit, 33 MHz PCI 2.2 compliant components. Communication between PCI_A and the MCH occurs over HI_A. Note that even though the Primary PCI bus is referred to as PCI_A it is not PCI Bus #0 from a configuration standpoint.
Full Reset	The term "a full MCH reset" is used in this document when RSTIN# is asserted.
Inbound (IB)	Refers to traffic moving from PCI or other I/O toward the system bus.
Outbound (OB)	Refers to traffic moving from the system bus to PCI or other I/O.

Term	Description
Single Bank DIMM	A DIMM which contains one DRAM row.
Double Bank DIMM	A DIMM which contains two DRAM rows.
Intel [®] x4 Single Device Data Correction (X4 SDDC)	In a x4 DDR memory device, provides error detection and correction for 1, 2, 3 or 4 data bits within that single device and in two x4 DDR memory devices, provides error detection in up to 8 data bits within those two devices.
RASUM	Reliability, Availability, Serviceability, Usability and Manageability.

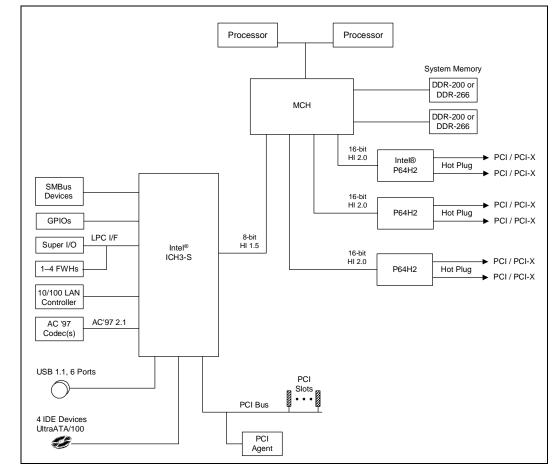
1.2 Reference Documents

For the server market, refer to the Intel[®] XeonTM Processor and Intel[®] E7500 / E7501 Chipset Compatible Platform Design Guide and your Field Representative for an expanded set of reference documents. For the applied-computing market, refer to the *Intel[®] Pentium[®] M Processor and Intel[®] E7501 Chipset Platform Design Guide*, and contact your field representative for an expanded set of reference documents.

Document	Document Number/ Location
Intel [®] Xeon™ Processor and Intel [®] E7500 / E7501 Chipset Compatible Platform Design Guide	http://developer.intel.com/ design/chipsets/e7500/ guides/251929.htm
Intel [®] Pentium [®] M Processor and Intel [®] E7501 Chipset Platform Design Guide	http://developer.intel.com/ design/intarch/designgd/ 273871.htm
Intel [®] 82870P2 PCI/PCI-X 64-bit Hub 2 (P64H2) Datasheet	http://developer.intel.com/ design/chipsets/e7500/ datashts/290732.htm
Intel [®] 82801 CA I/O Controller Hub 3-S (ICH3-S) Datasheet	http://developer.intel.com/ design/chipsets/e7500/ datashts/290733.htm
Intel [®] Xeon™ Processor with 512-KB L2 Cache at 1.80 GHz to 2.8 GHz Datasheet	http://developer.intel.com/ design/xeon/datashts/ 298642.htm
Intel [®] Xeon TM Processor with 533 MHz System Bus at 2.0 GHz to 2.8 GHz Datasheet	http://developer.intel.com/ design/xeon/datashts/ 252135.htm
Intel [®] Pentium [®] M Processor Datasheet	http://developer.intel.com/ design/mobile/datashts/ 252612.htm
Intel [®] E7500/E7501/E7505 Chipset Thermal Design Guide	http://developer.intel.com/ design/chipsets/e7500/ guides/298647
Intel [®] E7500 and Intel [®] E7501 Chipsets MCH Thermal Design Guide for Embedded Applications	http://developer.intel.com/ design/chipsets/e7501/ guides/273819.htm

1.3 Intel[®] E7501 Chipset System Architecture

The E7501 chipset is optimized for the Intel[®] Xeon[™] processor with 512 KByte L2 cache, the Intel Xeon processor with 533 MHz system bus, and the Intel[®] Pentium[®] M processor. The architecture of the chipset provides the performance and feature set required for dual-processor-based severs in the entry-level and mid-range, front-end, and general-purpose server market segments, and for uni-processor designs in the applied-computing market segments. A chipset component interconnect, the hub interface 2.0 (HI2.0), is designed into the Intel E7501 chipset to provide efficient communication between chipset components for high-speed I/O. Each HI2.0 provides 1.066 GB/s I/O bandwidth. The E7501 chipset has three HI2.0 connections, delivering up to 3.2 GB/s bandwidth for high-speed I/O, which can be used for PCI-X. The system bus, used to connect the processor with the E7501 chipset, uses a 400 MHz/533 MHz transfer rate for data transfers, delivering a maximum bandwidth of 3.2 GB/s / 4.27 GB/s. The E7501 chipset architecture supports a 144-bit wide, 200 MHz / 266 MHz Double Data Rate (DDR) memory interface. In dual-channel mode, it is also capable of transferring data at 3.2 GB/s / 4.27 GB/s. In single-channel mode, it is capable of transferring data at 1.6 GB/s / 2.1 GB/s.


In addition to these performance features, E7501 chipset-based platforms also provide the RASUM (Reliability, Availability, Serviceability, Usability, and Manageability) features required for entrylevel and mid-range servers. These features include: S4EC/D4ED technology ECC for dualchannel memory, SEC/DED technology ECC for single-channel memory, ECC for all highperformance I/O, out-of-bound manageability through SMBus target interfaces on all major components, memory scrubbing and auto-initialization, processor thermal monitoring, and hotplug PCI / PCI-X.

The E7501 chipset consists of three major components: the Memory Controller Hub (MCH), the I/O Controller Hub 3-S (ICH3-S), and the PCI/PCI-X 64-bit Hub 2.0 (P64H2). The chipset components communicate via hub interfaces (HIs). The MCH provides four hub interface connections: one for the ICH3-S and three for high-speed I/O using P64H2 bridges. The hub interfaces are point-to-point and therefore only support two agents (the MCH plus one I/O device), providing connections for up to three P64H2 bridges. The P64H2 provides bridging functions between hub interface_B–D and the PCI / PCI-X bus. Up to six PCI-X busses are supported. Each PCI-X bus is 66 MHz, 100 MHz, and 133 MHz PCI-X capable.

Additional platform features supported by the E7501 chipset include four ATA/100 IDE drives, Low Pin Count interface (LPC), integrated LAN controller, Audio Codec, and Universal Serial Bus (USB).

The E7501 chipset is also ACPI compliant and supports Full-on, Stop Grant, and Soft-off power management states. Through the use of an appropriate LAN device, the E7501 chipset also supports wake-on-LAN* for remote administration and troubleshooting.

Figure 1-1. Intel[®] E7501 Chipset MCH Platform Block Diagram

Signal Description

This chapter provides a detailed description of the E7501 chipset MCH signals. The signals are arranged in functional groups according to their associated interface.

The "#" symbol at the end of a signal name indicates that the active, or asserted state occurs when the signal is at a low voltage level. When "#" is not present after the signal name, the signal is asserted when at the high voltage level.

The following notations are used to describe the signal type:

T	Input pin	
0	Output pin	
I/O	Bidirectional Input/Output pin	
s/t/s	Sustained tri-state	This pin is driven to its inactive state prior to tri-stating.
as/t/s	Active Sustained tri-state	This applies to some of the HI signals. This pin is weakly driven to its last driven value.
2X	Double-pump clocking	Addressing at 2X of HCLKIN differential pair
4X	Quad-pump clocking	Data transfer at 4X of HCLKIN differential pair

The signal description also includes the type of buffer used for the particular signal:


AGTL+	Open drain AGTL+ interface signal. Refer to the AGTL+ I/O Specification for complete details. The E7501 chipset MCH integrates AGTL+ termination resistors.
CMOS	CMOS buffers.
SSTL-2	Stub Series Terminated Logic for 2.5 V (DDR Interface).

Note: Certain signals are logically inverted signals. The logic values are the inversion of the electrical values.

2

intel®

NOTE: Channel B is not active in single-channel mode.

2.1 System Bus Interface Signals

Signal Name	Туре	Description
ADS#	I/O AGTL+	Address Strobe: The system bus owner asserts ADS# to indicate the first of two cycles of a request phase.
AP[1:0]#	I/O AGTL+	Address Parity: The AP[1:0]# lines are driven by the request initiator along with ADS#, AP[35:3]#, and the transaction type on the REQ[4:0]# pins. A correct parity signal is high if an even number of covered signals are low and low if an odd number of covered signals are low. This allows parity to be high when all the covered signals are high. The MCH may be configured to send an error message to the Intel [®] ICH3-S
XERR#	l AGTL+	over HI_A when it detects an error on one of the AP[1:0]# signals. Error: This signal may be connected to the processor MCERR# or IERR# output signal, depending on system usage. The MCH detects an electrical high to-low transition on this input and sets the correct error bit. The MCH takes no other action except setting that bit.
BINIT#	l AGTL+	Bus Initialize: This signal indicates an unrecoverable error and can be driven by the processor. It is latched by the MCH.
BNR#	I/O AGTL+	Block Next Request: This signal is used to block the current request bus owner from issuing a new request. This signal is used to dynamically control the system bus pipeline depth.
BPRI#	O AGTL+	Priority Agent Bus Request: The MCH is the only priority agent on the system bus. It asserts this signal to obtain the ownership of the address bus. The MCH has priority over symmetric bus requests and will cause the current symmetric owner to stop issuing new transactions unless the HLOCK# signal is asserted.
BREQ0#	O AGTL+	Bus Request 0#: The MCH pulls the processor bus, BREQ0# signal low during CPURST#. The signal is sampled by the processors on the active-to-inactive transition of CPURST#. The minimum setup time for this signal is 4 HCLKINs. The minimum hold time is 2 HCLKINs and the maximum hold time is 20 HCLKINs. BREQ0# should be tri-state after the hold time requirement has been satisfied.
CPURST#	O AGTL+	CPU Reset: The MCH asserts CPURST# while RSTIN# (PCIRST# from ICH3-S) is asserted and for approximately 1 ms after RSTIN# is deasserted. The CPURST# allows the processors to begin execution in a known state.
DBI[3:0]#	I/O AGTL+ 4X	Dynamic Bus Inversion: DBI[3:0]# are driven along with the HD[63:0]# signals. They indicate when the associated signals are inverted. DBI[3:0]# are asserted such that the number of data bits driven electrically low (low voltage) within the corresponding 16-bit group never exceeds 8.
DBSY#	I/O AGTL+	Data Bus Busy: This signal is used by the data bus owner to hold the data bus for transfers requiring more than one cycle.
DEFER#	O AGTL+	Defer: This signal indicates that the MCH will terminate the transaction currently being snooped with either a deferred response or with a retry response.
DP[3:0]#	I/O AGTL+	Host Data Parity: The DP[3:0]# signals provide parity protection for HD[63:0]#. The DP[3:0]# signals are common clock signals and are driven one common clock after the data phases they cover. DP[3:0]# are driven by the same agent driving HD[63:0]#. Data parity is correct if there are an even number of electrically low signals
DRDY#	I/O AGTL+	(low voltage) in the set consisting of the covered signals plus the parity signal. Data Ready: DRDY# is asserted for each cycle that data is transferred.

Table 2-1. Signal Description (Sheet 1 of 3)

Table 2-1. Signal Description (Sheet 2 of 3)

Signal Name	Туре	Description
HA[35:3]#	I/O AGTL+ 2X	Host Address Bus: HA[35:3]# connect to the system address bus. During processor cycles, HA[35:3]# are inputs. The MCH drives HA[35:3]# whenever it becomes the system bus master.
HADSTB[1:0]#	I/O AGTL+ 2X	Host Address Strobe: The source synchronous strobes are used to transfer HA[35:3]# and HREQ[4:0]# at the 2X transfer rate. Strobe Address Bits HADSTB0# HA[16:3]#, HREQ[4:0]# HADSTB1# HA[35:17]#
HD[63:0]#	I/O AGTL+ 4X	Host Data: These signals are connected to the system data bus.
HDSTBP[3:0]# HDSTBN[3:0]#	I/O AGTL+ 4X	Differential Host Data Strobes: The differential source synchronous strobes are used to transfer HD[63:0]# and DBI[3:0]# at the 4X transfer rate.StrobeData BitsHDSTBP3#, HDSTBN3#HD[63:48]#, DBI3# HD[53:48]#, DBI3# HDSTBP2#, HDSTBN2#HDSTBP2#, HDSTBN2#HD[47:32]#, DBI2# HD[31:16]#, DBI1# HDSTBP0#, HDSTBN0#HDSTBP0#, HDSTBN0#HD[15:0]#, DBI0#
HIT#	I/O AGTL+	Hit: HIT# indicates that a caching agent holds an unmodified version of the requested line. Also, driven in conjunction with HITM# by the target to extend the snoop window.
HITM#	I/O AGTL+	Hit Modified: HITM# indicates that a caching agent holds a modified version of the requested line and that this agent assumes responsibility for providing the line. HITM# is driven in conjunction with HIT# to extend the snoop window.
HLOCK#	l AGTL+	Host Lock: This signal indicates to the system that a transaction must occur atomically. For a locked sequence of transactions, HLOCK# is asserted from the beginning of the first transaction to the end of the last transaction. When the priority agent asserts BPRI# to arbitrate for ownership of the processor system bus, it will wait until it observes HLOCK# deasserted. This enables symmetric agents to retain ownership of the processor system bus throughout the bus locked operation and ensure the atomicity of lock.
HREQ[4:0]#	I/O AGTL+ 2X	Host Request Command: These signals are asserted by the current bus owner to define the currently active transaction type.
HTRDY#	O AGTL+	Host Target Ready: This signal indicates that the target of the processor transaction is able to enter the data transfer phase.
RS[2:0]#	O AGTL+	Response Signals: These signals indicate the type of response according to the following table: RS[2:0]# Response type 000 Idle state 001 Retry response 010 Deferred response 011 Reserved (not driven by MCH) 100 Hard Failure (not driven by MCH) 101 No data response 110 Implicit Writeback 111 Normal data response

Table 2-1. Signal Description (Sheet 3 of 3)

Signal Name	Туре	Description
RSP#	O AGTL+	Response Parity: RSP# provides parity protection for the RS[2:0]# signals. RSP# is always driven by the MCH and must be valid on all clocks. Response parity is correct when there are an even number of low signals (low voltage) in the set consisting of the RS[2:0]# signals and the RSP# signal itself.
HCLKINP HCLKINN	l Analog	Differential Host Clock In: These signals receive a differential host clock from the external clock synthesizer. This clock is used by all the MCH logic in the host clock domain.
HDVREF[3:0]	l Analog	Host Data Reference Voltage: Reference voltage input for the 4X data signals of the Host GTL interface.
HAVREF[1:0]	l Analog	Host Address Reference Voltage: Reference voltage input for the 2X address signals of the Host GTL interface.
HCCVREF	l Analog	Host Common Clock Reference Voltage: Reference voltage input for the common clock signals of the Host GTL interface.
HXSWNG HYSWNG	l Analog	Host Voltage Swing: These signals provide a reference voltage used by the system bus HRCOMP circuit.
HXRCOMP HYRCOMP	l Analog	Host RCOMP: These signals are used to calibrate the Host AGTL+ I/O buffers.

2.2 DDR Channel A Signals

Table 2-2. DDR Channel_A Channel Signals

Signal Name	Туре	Description
CB_A[7:0]	I/O SSTL-2	DDR Channel A Check Bits: These check bits are required to provide ECC support.
DQ_A[63:0]	I/O SSTL-2	DDR Channel A Data Bus: The DDR data bus provides the data from the DRAM devices.
DQS_A[17:0]	I/O SSTL-2	DDR Channel A Data Strobes: The DDR data strobes. Each data strobe is used to strobe a set of data signals defined in Section 5.5.4.
CMDCLK_A[3:0], CMDCLK_A[3:0]#	O SSTL-2	DDR Channel A Command CLOCK: These signals are the DDR command clocks used by the DDR DRAMs to latch MA_A[12:0], BA_A[1:0], RAS_A#, CAS_A#, WE_A#, CKE_A, and CS_A[7:0]# signals.
MA_A[12:0]	O SSTL-2	DDR Channel A Memory Address: MA_A[12:0] are the DDR memory address signals. These signals are outputs of the MCH.
BA_A[1:0]	O SSTL-2	DDR Channel A Bank Address: BA_A[1:0] are the DDR bank address signals. These signals are outputs of the MCH and select which bank within a row is selected.
RAS_A#	O SSTL-2	DDR Channel A Row Address Strobe: RAS_A# is used to indicate a valid row address and open a row.
CAS_A#	O SSTL-2	DDR Channel A Column Address Strobe: CAS_A# is used to indicate a valid column address and initiate a transaction.
WE_A#	O SSTL-2	DDR Channel A Write Enable: WE_A# is used to indicate a write cycle.
CS_A[7:0]#	O SSTL-2	DDR Channel A Chipselect: The chip selects are used to indicate for which row cycles are targeted.
CKE_A	O SSTL-2	DDR Channel A Clock Enable: CKE_A is the DDR Channel A clock enable.
RCVEN_A	I/O SSTL-2	Receive Enable Output: RCVEN_A is used for DRAM timing.
DDRCOMP_A	l Analog	Compensation for DDR A: This signal is used to calibrate the buffers for DDR channel A.
DDRCVO_A	l Analog	Compensation for DDR A: This signal is used as a reference voltage in the calibration of channel A DDR buffers.
DDRVREF_A[3:0]	l Analog	DDR Channel A Voltage Reference: The DDR voltage reference.
ODTCOMP	l Analog	On-Die Termination RCOMP: ODTCOMP provides compensation for the On-Die termination for the DDR interface on both channels. It is connected to an external pull-down resistor for on-die termination.

2.3 DDR Channel B Signals

Table 2-3. DDR Channel_B Channel Signals

Signal Name	Туре	Description
CB_B[7:0]	I/O SSTL-2	DDR Channel B Check Bits: These check bits are required to provide ECC support.
DQ_B[63:0]	I/O SSTL-2	DDR Channel B Data Bus: These signals are the DDR data bus that provides the data for the DRAM devices.
DQS_B[17:0]	I/O SSTL-2	DDR Channel B Data Strobes: These signals are the DDR data strobes. Each data strobe is used to strobe a set of data signals defined in Section 5.5.4.
CMDCLK_B[3:0], CMDCLK_B[3:0]#	O SSTL-2	DDR Channel B Command CLOCK: These signals are the DDR command clocks used by the DDR DRAMs to latch MA_B[12:0], BA_B[1:0], RAS_B#, CAS_B#, WE_B#, CKE_B, and CS_B[7:0]# signals.
MA_B[12:0]	O SSTL-2	DDR Channel B Memory Address: MA_B[12:0] are the DDR memory address signals. These signals are outputs of the MCH.
BA_B[1:0]	O SSTL-2	DDR Channel B Bank Address: BA_B[1:0] are the DDR bank address signals. These signals are outputs of the MCH and select which bank within a row is selected.
RAS_B#	O SSTL-2	DDR Channel B Row Address Strobe: RAS_B# is used to indicate a valid row address and open a row.
CAS_B#	O SSTL-2	DDR Channel B Column Address Strobe: CAS_B# is used to indicate a valid column address and initiate a transaction.
WE_B#	O SSTL-2	DDR Channel B Write Enable: WE_B# is used to indicate a write cycle.
CS_B[7:0]#	O SSTL-2	DDR Channel B Chipselect: The chip selects are used to indicate for which ROW cycles are targeted.
CKE_B	O SSTL-2	DDR Channel B Clock Enable: The DDR Channel B clock enable.
RCVEN_B	I/O SSTL-2	Receive Enable Output: RCVEN_B is used for DRAM timing.
DDRCOMP_B	l Analog	Compensation for DDR B: This signal is used to calibrate the buffers for DDR channel B.
DDRCVO_B	l Analog	Compensation for DDR B: This signal is used as a reference voltage in the calibration of channel B DDR buffers.
DDRVREF_B[3:0]	l Analog	DDR Channel B Voltage Reference: The DDR voltage reference.

NOTE: Channel B is not active in single-channel mode.

intel®

2.4 Hub Interface_A Signals

Table 2-4. HI _A Signals

Signal Name	Туре	Description
HI_A[11:0]	I/O (as/t/s) CMOS	HI_A Signals: These signals are used for the hub interface between the Intel [®] ICH3-S and the MCH.
HI_STBF	I/O (as/t/s) CMOS	HI_A Strobe: This signal is one of the two strobes signals used to transmit and receive packet data over HI_A.
HI_STBS	I/O (as/t/s) CMOS	HI_A Strobe Compliment: This signal is one of the two strobes signals used to transmit and receive packet data over HI_A.
HIRCOMP_A	l Analog	Compensation for HI_A: This signal is used to calibrate the HI_A I/O buffers.
HISWNG_A	l Analog	HI_A Voltage Swing: This signal provides a reference voltage used by the HIRCOMP_A circuit.
HIVREF_A	l Analog	HI_A Reference: Reference voltage input for HI_A.

2.5 Hub Interface_B Signals

Table 2-5. HI_B Signals

Signal Name	Туре	Description
HI_B[21:20]	I/O (as/t/s) CMOS	HI_B Signals: These are the ECC signals used for connection between the 16-bit hub and the MCH.
HI_B[18:0]	I/O (as/t/s) CMOS	HI_B Signals: These are the signals used for connection between the 16-bit hub and the MCH.
PSTRBF_B	I/O (as/t/s) CMOS	HI_B Strobe: This signal is one of two strobes signal pairs used to transmit or receive lower 8-bit packet data over HI_B.
PSTRBS_B	I/O (as/t/s) CMOS	HI_B Strobe Complement: This signal is one of two strobes signal pairs used to transmit or receive lower 8-bit packet data over HI_B.
PUSTRBF_B	I/O (as/t/s) CMOS	HI_B Strobe: This signal is one of two strobes signal pairs used to transmit or receive upper 8-bit packet data over HI_B.
PUSTRBS_B	I/O (as/t/s) CMOS	HI_B Strobe Complement: This signal is one of two strobes signal pairs used to transmit or receive upper 8-bit packet data over HI_B.
HIRCOMP_B	I CMOS	Compensation for HI_B: This signal is used to calibrate the HI_B I/O buffers.
HISWNG_B	l Analog	HI_B Voltage Swing: This signal provides a reference voltage used by the HIRCOMP_B circuit.
HIVREF_B	l Analog	HI_B Reference: Reference voltage input for HI_B.

intel®

2.6 Hub Interface_C Signals

Table 2-6. HI_C Signals

Signal Name	Туре	Description
HI_C[21:20]	I/O (as/t/s) CMOS	HI_C Signals: These are the ECC signals used for connection between the 16-bit hub and the MCH.
HI_C[18:0]	I/O (as/t/s) CMOS	HI_C Signals: These signals are used for the connection between the 16-bit hub and the MCH.
PSTRBF_C	I/O (as/t/s) CMOS	HI_C Strobe: This signal is one of two strobe signals pairs used to transmit or receive lower 8-bit data over HI_C.
PSTRBS_C	I/O (as/t/s) CMOS	HI_C Strobe Complement: This signal is one of two strobe signals pairs used to transmit or receive lower 8-bit data over HI_C.
PUSTRBF_C	I/O (as/t/s) CMOS	HI_C Strobe: This signal is one of two strobe signals pairs used to transmit or receive upper 8-bit data over HI_C.
PUSTRBS_C	I/O (as/t/s) CMOS	HI_C Strobe Complement: This signal is one of two strobe signal pairs used to transmit or receive upper 8-bit data over HI_C.
HIRCOMP_C	I CMOS	Compensation for HI_C: This signal is used to calibrate the HI_C I/O buffers.
HISWNG_C	l Analog	HI_C Voltage Swing: This signal provides a reference voltage used by the HIRCOMP_C circuit.
HIVREF_C	l Analog	HI_C Reference: Reference voltage input for HI_C.

2.7 Hub Interface_D Signals

Table 2-7. HI_D Signals

Signal Name	Туре	Description
HI_D[21:20]	I/O (as/t/s) CMOS	HI_D Signals: These are the ECC signals used for connection between the 16-bit hub and the MCH.
HI_D[18:0]	I/O (as/t/s) CMOS	HI_D Signals: These signals are used for the connection between the 16-bit hub and the MCH.
PSTRBF_D	I/O (as/t/s) CMOS	HI_D Strobe: This signal is one of two strobe signal pairs used to transmit or receive lower 8-bit data over HI_D.
PSTRBS_D	I/O (as/t/s) CMOS	HI_D Strobe Complement: This signal is one of two strobe signal pairs used to transmit or receive lower 8-bit data over HI_D.
PUSTRF_D	I/O (as/t/s) CMOS	HI_D Strobe: This signal is one of two strobe signal pairs used to transmit or receive upper 8-bit data over HI_D.
PUSTRS_D	I/O (as/t/s) CMOS	HI_D Strobe Complement: This signal is one of two strobe signal pairs used to transmit or receive upper 8-bit data over HI_D.
HIRCOMP_D	I CMOS	Compensation for HI_D: This signal is used to calibrate the HI_D I/O buffers.
HISWNG_D	l Analog	HI_D Voltage Swing: This signal provides a reference voltage used by the HIRCOMP_D circuit.
HIVREF_D	l Analog	HI_D Reference: Reference voltage input for HI_D.

2.8 Clocks, Reset, Power, and Miscellaneous Signals

Signal Name	Туре	Description
CLK66	I CMOS	66 MHz Clock In: This pin receives a 66 MHz clock from the clock synthesizer. This clock is used by the HI_A, HI_B, HI_C, HI_D clock domains. Note: This clock input is required to be 3.3 V tolerant.
RSTIN#	I CMOS	Reset In: When asserted, this signal asynchronously resets the MCH logic. This signal is connected to the PCIRST# output of the ICH3-S.
XORMODE#	I CMOS	Test Input: When asserted, the MCH places all outputs in XOR-mode for board level testing.
PWRGOOD	I	Power Good: This signal resets all MCH, including "sticky" logic.
SMB_CLK	I/O Open Drain	SMBus clock: This is the clock pin for the SMBus interface.
SMB_DATA	I/O Open Drain	SMBus data: This is the data pin for the SMBus interface.
VCC1_2		Power: These pins are 1.2 V power input pins for HI_A–D, and the MCH core.
VCCA1_2		Power: These pins are 1.2 V analog power input pins.
VCCAHI1_2		Power: This pin is a 1.2 V analog power input pin.
VCCACPU1_2		Power: This pin is a 1.2 V analog power input pin.
VCC_CPU		Power: For the system bus interface.
VCC2_5		Power: These pins are 2.5 V power input pins for DDR.
VSS		Ground: Ground pin.

Table 2-8. Clocks, Reset, Power, and Miscellaneous Signals

Register Description

3

The MCH contains two sets of software accessible registers, accessed via the host processor I/O address space:

- **Control registers** These registers are I/O mapped into the processor I/O space, which control access to PCI configuration space (see Section 3.4, "I/O Mapped Registers" on page 3-33).
- **Internal configuration registers** These registers, which reside within the MCH, are partitioned into multiple logical device register sets ("logical" since they reside within a single physical device). One of the register sets is dedicated to Host-HI Bridge functionality (controls DRAM configuration, other chipset operating parameters, and optional features). Other register sets map to HI_B, HI_C, and HI_D.

The MCH supports PCI configuration space accesses using the mechanism denoted as Configuration Mechanism 1 in the PCI specification.

The MCH internal registers (I/O mapped and configuration registers) are accessible by the host. The registers can be accessed as Byte (8-bit), Word (16-bit), or DWord (32-bit) quantities, with the exception of the CONFIG_ADDRESS Register, which can only be accessed as a DWord. All multi-byte numeric fields use "little-endian" ordering (i.e., lower addresses contain the least significant parts of the field).

3.1 Register Terminology

Term	Description	
RO	Read Only: If a register is read only, writes to this register have no effect.	
R/W	Read/Write: A register with this attribute can be read and written.	
R/W/L	Read/Write/Lock: a register with this attribute can be read, written, and locked.	
R/WC	Read/Write Clear: A register bit with this attribute can be read and written. However, a write of a 1 clears (sets to 0) the corresponding bit and a write of a 0 has no effect.	
L	Lock: A register bit with this attribute can be written to only once after power-up. After the first write, the bit becomes read only.	
Sticky	Certain registers in the MCH are sticky through a soft-reset. They will only be reset on a hard reset or power-good reset. These registers in general are the error logging registers and a few special cases.	
Reserved Bits	Some of the MCH registers described in this section contain reserved bits. These bits are labeled "Reserved." Software must deal correctly with fields that are reserved. On reads, software must use appropriate masks to extract the defined bits and not rely on reserved bits being any particular value. On writes, software must ensure that the values of reserved bit positions are preserved. That is, the values of reserved bit positions must first be read, merged with the new values for other bit positions and then written back. Note that software does not need to perform read, merge, write operation for the Configuration address (CONFIG_ADDRESS) register.	
Reserved Registers	The MCH contains address locations in the configuration space of the Host-HI Bridge entity that are marked "Reserved". Registers marked as "Reserved" must not be modified by system software. Writes to "Reserved" registers may cause system failure. Reads from "Reserved" registers may return a non-zero value.	

Term	Description	
Default Value upon a Reset	Upon a Full Reset, the MCH sets all of its internal configuration registers to predetermined default states. Some register values at reset are determined by external strapping options. The default state represents the minimum functionary feature set required to successfully bring up the system. Hence, it does not represent the optimal system configuration. It is the responsibility of the system initialization software (usually BIOS) to properly determine the DRAM configurations, operating parameters, and optional system features that are applicable, and to program the MCH registers accordingly.	

3.2 Platform Configuration

The MCH and the ICH3-S are physically connected by HI_A. From a configuration standpoint, HI_A is logically PCI bus 0. As a result, all devices internal to the MCH and ICH3-S appear to be on PCI bus 0. The system's primary PCI expansion bus is physically attached to the ICH3-S and, from a configuration perspective appears to be a hierarchical PCI bus behind a PCI-to-PCI bridge and therefore has a programmable PCI Bus number.

Note: The primary PCI bus is referred to as PCI_A in this document and is not PCI bus 0 from a configuration standpoint.

The 16-bit hub interface ports appear to system software to be real PCI buses behind PCI-to-PCI bridges resident as devices on PCI bus 0.

The MCH decodes multiple PCI device numbers. The configuration registers for the devices are mapped as devices residing on PCI bus 0. Each device number may contain multiple functions.

- **Device 0**: Host-HI_A Bridge/DRAM controller. Logically this appears as a PCI device residing on PCI bus 0. Physically Device 0 contains the standard PCI registers, DRAM registers, configuration for HI_A, and other MCH specific registers.
- **Device 2**: Host-HI_B Bridge. Logically this bridge appears to be a PCI-to-PCI bridge device residing on PCI bus 0. Physically, Device 2 contains the standard PCI registers and device-specific configuration registers for HI_B.
- **Device 3**: Host-HI_C Bridge. Logically this bridge appears to be a PCI-to-PCI bridge device residing on PCI bus 0. Physically, Device 3 contains the standard PCI registers and device-specific configuration registers for HI_C.
- **Device 4**: Host-HI_D Bridge. Logically this bridge appears to be a PCI-to-PCI bridge device residing on PCI bus 0. Physically, Device 4 contains the standard PCI registers and device specific configuration registers for HI_D.

Table 3-1 shows the device number assignment for the various internal MCH devices.

Table 3-1. MCH Logical Configuration Resources

MCH Function	Device #, Function #
Chipset Host Controller (8-bit HI_A)	Device 0, Function 0
Chipset Host RASUM Controller (8-bit HI_A)	Device 0, Function 1
Hub Interface_B PCI-to-PCI Bridge (16-bit PCI2PCI)	Device 2, Function 0
Hub Interface_B PCI-to-PCI Bridge Error Reporting (16-bit PCI2PCI)	Device 2, Function 1
Hub Interface_C PCI-to-PCI Bridge (16-bit PCI2PCI)	Device 3, Function 0
Hub Interface_C PCI-to-PCI Bridge Error Reporting (16-bit PCI2PCI)	Device 3, Function 1
Hub Interface_D PCI-to-PCI Bridge (16-bit PCI2PCI)	Device 4, Function 0
Hub Interface_D PCI-to-PCI Bridge Error Reporting (16-bit PCI2PCI)	Device 4, Function 1

3.2.1 Standard PCI Configuration Mechanism

The PCI Bus defines a slot-based configuration space that allows each device to contain up to eight functions; each function contains up to 256, 8-bit configuration registers. The PCI specification defines two bus cycles to access the PCI configuration space: Configuration Read and Configuration Write. Memory and I/O spaces are supported directly by the processor. Configuration space is supported by a mapping mechanism implemented within the MCH. The PCI specification defines two mechanisms to access configuration space, Mechanism 1 and Mechanism 2. **The MCH only supports Mechanism 1**.

The configuration access mechanism makes use of the CONFIG_ADDRESS Register and CONFIG_DATA Register. To reference a configuration register a DWord I/O write cycle is used to place a value into CONFIG_ADDRESS that specifies the PCI bus, the device on that bus, the function within the device, and a specific configuration register of the device function being accessed. CONFIG_ADDRESS[31] must be 1 to enable a configuration cycle. CONFIG_DATA then becomes a window into the four bytes of configuration space specified by the contents of CONFIG_ADDRESS. Any read or write to CONFIG_DATA results in the MCH translating the CONFIG_ADDRESS into the appropriate configuration cycle. The MCH is responsible for translating and routing the processor's I/O accesses to the CONFIG_ADDRESS and CONFIG_DATA registers to internal MCH configuration registers for HI_A, HI_B, HI_C, and HI_D.

3.3 PCI Configuration Cycle Routing

The MCH supports up to four hub interfaces: HI_A, HI_B, HI_C, and HI_D. PCI configuration cycles are selectively routed to one of these interfaces. The MCH is responsible for routing PCI configuration cycles to the proper interface. PCI configuration cycles to ICH3-S internal devices and Primary PCI (including downstream devices) are routed to the ICH3-S via HI_A. PCI configuration cycles to any of the 16-bit hub interfaces are routed to HI_B, HI_C, and HI_D. Routing of configuration accesses to HI_B, HI_C, and HI_D is controlled via the standard PCI-to-PCI bridge mechanism using information contained within the primary bus number, the secondary bus number, and the subordinate bus number registers of the corresponding PCI-to-PCI bridge device.

A detailed description of the mechanism for translating processor I/O bus cycles to configuration cycles on one of the buses is described in the following sections.

Note: The MCH supports a variety of connectivity options. When any of the MCH's hub interfaces (HI_B, HI_C, and HI_D) is disabled, the associated hub interface's device registers are not visible. Configuration cycles to these registers will return all ones for a read and master abort for a write.

3.3.1 Logical PCI Bus 0 Configuration Mechanism

The MCH decodes the Bus Number (bits 23:16) and the Device Number (bits 15:11) fields of the CONFIG_ADDRESS register. When the Bus Number field of CONFIG_ADDRESS is 0, the configuration cycle is targeting a PCI Bus 0 device.

- The Host-HI_A bridge entity within the MCH is hardwired as Device 0 on PCI Bus 0.
- The Host-HI_B bridge entity within the MCH is hardwired as Device 2 on PCI Bus 0.
- The Host-HI_C bridge entity within the MCH is hardwired as Device 3 on PCI Bus 0.
- The Host-HI_D bridge entity within the MCH is hardwired as Device 4 on PCI Bus 0.

Configuration cycles to any of the MCH's enabled internal devices are confined to the MCH and not sent over HI_A. Accesses to disabled MCH internal devices, or Devices 8 to 31 are forwarded over HI_A as Type 0 configuration cycles. The ICH3-S decodes the Type 0 access and generates a configuration access to the selected internal device.

3.3.2 **Primary PCI Downstream Configuration Mechanism**

When the Bus Number in the CONFIG_ADDRESS is non-zero, and does not lie between the Secondary Bus Number registers and the Subordinate Bus Number registers for one of the 16-bit hub interfaces (HI_B, HI_C, and HI_D) the MCH generates a Type 1 HI_A configuration cycle.

When the cycle is forwarded to the ICH3-S via HI_A, the ICH3-S compares the non-zero Bus Number with the Secondary Bus Number and Subordinate Bus Number registers of its PCI-to-PCI bridges to determine if the configuration cycle is meant for Primary PCI or a downstream PCI bus.

3.3.3 HI_B, HI_C, HI_D Bus Configuration Mechanism

From the chipset configuration perspective, HI_B, HI_C, and HI_D are seen as PCI bus interfaces residing on a Secondary Bus side of the "virtual" PCI-to-PCI bridges referred to as the MCH Host-HI_B, HI_C, HI_D bridges.

Note: There is no requirement that the secondary and subordinate bus number values from one hub interface be contiguous with any other hub interface. It is possible that HI_B will decode buses 2 through 5, HI_C will decode buses 8 through 12, and HI_D will decode buses 13 through 15. In this case there is a gap where buses 6 and 7 are subtractively decoded to HI_A.

When the bus number is non-zero, greater than the value programmed into the Secondary Bus Number register, and less than or equal to the value programmed into the corresponding Subordinate Bus Number register, the configuration cycle is targeting a PCI bus downstream of the targeted hub interface. The MCH generates a Type 1 hub interface configuration cycle on the appropriate hub interface.

3.4 I/O Mapped Registers

The MCH contains two registers that reside in the processor I/O address space: the Configuration Address (CONFIG_ADDRESS) Register and the Configuration Data (CONFIG_DATA) Register. The Configuration Address Register enables/disables the configuration space and determines what portion of configuration space is visible through the Configuration Data window.

3.4.1 CONFIG_ADDRESS—Configuration Address Register

I/O Address:	0CF8h Accessed as a DWord
Default Value:	0000000h
Access:	R/W
Size:	32 bits

CONFIG_ADDRESS is a 32-bit register that can be accessed only as a DWord. A Byte or Word reference will pass through the Configuration Address Register and HI_A onto the PCI_A bus as an I/O cycle. The CONFIG_ADDRESS register contains the Bus Number, Device Number, Function Number, and Register Number for which a subsequent configuration access is intended.

Bit	Descriptions	
31	Configuration Enable (CFGE). 0 = Enable. 1 = Disable.	
30:24	Reserved. These bits are read only and have a value of 0.	
23:16	Bus Number. This field contains the bus number being targeted by the config cycle.	
15:11	Device Number. This field selects one of the 32 possible devices per bus.	
10:8	Function Number. This field selects one of 8 possible functions within a device.	
7:2	Register Number. This field selects one register within a particular Bus, Device, and Function as specified by the other fields in the Configuration Address Register. This field is mapped to A[7:2] during HI_A-D Configuration cycles.	
1:0	Reserved	

3.4.2 CONFIG_DATA—Configuration Data Register

I/O Address:	0CFCh
Default Value:	0000000h
Access:	R/W
Size:	32 bits

CONFIG_DATA is a 32-bit read/write window into configuration space. The portion of configuration space that is referenced by CONFIG_DATA is determined by the contents of CONFIG_ADDRESS.

Bit	Descriptions
31:0	Configuration Data Window (CDW). If bit 31 of CONFIG_ADDRESS is 1, any I/O accesses to the CONFIG_DATA register are mapped to configuration space using the contents of CONFIG_ADDRESS.

3.5 Chipset Host Controller Registers (Device 0, Function 0)

The Chipset Host Controller registers are in Device 0 (D0), Function 0 (F0). Table 3-2 provides the register address map for this device, function.

Warning: Address locations not listed in the table are considered reserved register locations. Writes to "Reserved" registers may cause system failure. Reads to "Reserved" registers may return a non-zero value.

Offset	Mnemonic	Register Name	Default	Туре
00–01h	VID	Vendor Identification	8086h	RO
02–03h	DID	Device Identification	254Ch	RO
04–05h	PCICMD	PCI Command	0006h	RO, R/W
06–07h	PCISTS	PCI Status	0090h	RO, R/WC
08h	RID	Revision Identification	See register description	RO
0Ah	SUBC	Sub-Class Code	00h	RO
0Bh	BCC	Base Class Code	06h	RO
0Dh	MLT	Master Latency Timer	00h	_
0Eh	HDR	Header Type	00h	RO
2C–2Dh	SVID	Subsystem Vendor Identification	0000h	R/WO
2E–2Fh	SID	Subsystem Identification	0000h	R/WO
34h	CAPPTR	Capabilities Pointer	40h	RO
40–44h	MCHCAP	MCH Capabilities Structure	0001050009h	RO
50–51h	MCHCFG	MCH Configuration	0000h or 0004h	R/W
52–53h	MCHCFGNS	MCH Memory Scrub and Initialization Configuration	0000h	RO, R/W
58h	FDHC	Fixed DRAM Hole Control	00h	R/W
59–5Fh	PAM[6:0]	Programmable Attribute Map (7 registers)	00h	R/W
60–67h	DRB[0:7]	DRAM Row Boundary (8 registers)	00h	R/W
70–73h	DRA[3:0]	DRAM Row Attribute (4 registers)	00h	R/W
78–7Bh	DRT	DRAM Timing	00000010h	R/W
7C–7Fh	DRC	DRAM Controller Mode	00440009h	R/W
8Ch	CKDIS	CK/CK# Disable	80h	RO,R/W
9Ch	CFGCTL	Configuration Control Register	00h	R/W
9Dh	SMRAMC	System Management RAM Control	02h	RO, R/W, L
9Eh	ESMRAMC	Extended System Management RAM Control	38h	R/W, R/WC, R/W/L
C4–C5h	TOLM	Top of Low Memory	0800h	R/W
C6–C7h	REMAPBASE	Remap Base Address	03FFh	R/W
C8–C9h	REMAPLIMIT	Remap Limit Address	0000h	R/W
DE-DFh	SKPD	Scratchpad Data	0000h	R/W
E0–E1h	DVNP	Device Not Present	1D1Dh	R/W

Table 3-2. Chipset Host Controller Register Map (D0:F0)

3.5.1 VID—Vendor Identification Register (D0:F0)

00–01h
3086h
२०
6 Bits

The VID Register contains the vendor identification number. This 16-bit register combined with the Device Identification register uniquely identifies any PCI device.

Bits	Default, Access	Description
15:0	8086h RO	Vendor Identification (VID). This register field contains the PCI standard identification for Intel, 8086h.

3.5.2 DID—Device Identification Register (D0:F0)

Address Offset:	02–03h
Default:	254Ch
Access:	RO
Size:	16 Bits

This 16-bit register combined with the Vendor Identification register uniquely identifies this MCH.

Bits	Default, Access	Description
15:0	254Ch RO	Device Identification Number (DID). This is a 16-bit value assigned to the MCH Host- HI Bridge Function 0.

intel®

3.5.3 PCICMD—PCI Command Register (D0:F0)

Address Offset:	04–05h
Default:	0006h
Access:	RO, R/W
Size:	16 Bits

Since MCH Device 0 does not physically reside on PCI_A, portions of this register are not implemented.

Bits	Default, Access	Description
15:10	00h	Reserved
9	0b RO	Fast Back-to-Back Enable (FB2B). Hardwired to 0. This bit controls whether or not the master can do fast back-to-back writes. Since Device 0 is strictly a target, this bit is not implemented.
8	0b R/W	 SERR Enable (SERRE). This bit is defined for compatibility with legacy designs. The BIOS should not use this bit and instead use FERR/NERR support in Device 0, Function 1, offset 04h, bit 8. This bit is a global enable bit for Device 0, Function 0 SERR messaging. The MCH does not have a SERR signal. The MCH communicates the SERR condition by sending a SERR message over HI_A to the ICH3-S. 0 = Disable. SERR message is not generated by the MCH for Device 0, Function 0. 1 = Enable. MCH is enabled to generate SERR messages when PERRE is also set (bit 6 of this register). Error flags are reported in the PCISTS register. NOTE: This bit only controls SERR messaging for Device 0. Devices 2–4 have their own SERR bits to control error reporting for error conditions occurring on their respective devices. The control bits are used in a logical OR configuration to enable the SERR HI_A message mechanism.
7	0b RO	Address/Data Stepping Enable (ADSTEP). Hardwired to 0. Address/data stepping is not implemented.
6	0b R/W	 Parity Error Enable (PERRE). This bit is defined for compatibility with legacy designs. The BIOS should not use this bit and instead use FERR/NERR support in Device 0, Function 1, offset 50h, bits 4 and 0. 0 = Disable. MCH takes no action when it detects a parity error on HI_A. 1 = Enable. MCH generates a SERR message over HI_A to the ICH3-S when an address or data parity error is detected by the MCH on HI_A (DPE set in PCISTS), and SERRE is therefore set to 1.
5	0b RO	VGA Palette Snoop Enable (VGASNOOP). Hardwired to 0. The MCH does not implement.
4	0b RO	Memory Write and Invalidate Enable (MWIE). Hardwired to 0. The MCH never issues memory write and invalidate commands.
3	0b RO	Special Cycle Enable (SCE). Hardwired to 0. The MCH does not implement this bit.
2	1b RO	Bus Master Enable (BME). Hardwired to 1. The MCH is always enabled as a master on HI_A.
1	1b RO	Memory Access Enable (MAE). Hardwired to 1. The MCH always allows access to main memory.
0	0b RO	I/O Access Enable (IOAE). Hardwired to 0. The MCH does not implement this bit.

3.5.4 PCISTS—PCI Status Register (D0:F0)

Address Offset:	06–07h
Default:	0090h
Access:	RO, R/WC
Size:	16 Bits

PCISTS is a 16-bit status register that reports the occurrence of error events on Device 0's PCI interface. Since MCH Device 0 does not physically reside on PCI_A, many of the bits are not implemented.

15 0b Detected Parity Error (DPE). This bit is defined for compatibility with legacy desig 15 0b The BIOS should clear this bit in addition to using FERR/NERR support in Device (Function 1, offset 40h/44h, bit 17, and Device 0, Function 1, offset 50/52h, bit 4 and 0. Software clears this bit by writing a 1 to it. 0 No parity error detected. 1 MCH detected an address or data parity error on HI_A interface. 14 0b 15 NWC 16 NWC 17 0b 18 NWC 19 Ne BIOS should not use this bit and instead use FERR/NERR support in Device 0 10 No SERR generated by MCH Device 0. 11 MCH Device 0, Function 0 generated a SERR message over HI_A for a parity error condition. Device 0 error conditions are enabled in the PCICMD registers Device 0 error flags are read/reset from the PCISTS register. 13 0b Received Master Abort Status (RMAS). Hardwired to 0. The Intel [®] ICH3-S never sends a Master Abort completion.	, bit ns.
14 0b The BIOS should not use this bit and instead use FERR/NERR support in Device 0 14 0b Function 1, offset 06h, bit 4 and bit 0. Software clears this bit by writing a 1 to it. 14 0 = No SERR generated by MCH Device 0. 1 = MCH Device 0, Function 0 generated a SERR message over HI_A for a parity error condition. Device 0 error conditions are enabled in the PCICMD registers. 13 0b 13 Received Master Abort Status (RMAS). Hardwired to 0. The Intel [®] ICH3-S never	
12 0b R/WC Received Target Abort Status (RTAS). Software clears this bit by writing a 1 to it. 12 0 = No received Target Abort generated by MCH. 1 = MCH generated an HI_A request that receives a Target Abort completion pack	ət.
0b RO Signaled Target Abort Status (STAS). Hardwired to 0. The MCH will not generate Target Abort on HI_A.	a
10:9 00b RO DEVSEL Timing (DEVT). Hardwired to 00b. Device 0 does not physically connect PCI_A. These bits are set to 00b (fast decode) so that optimum DEVSEL timing for PCI_A is not limited by the MCH.	Э
8 0b RO Master Data Parity Error Detected (DPD). Hardwired to 0. PERR signaling and messaging are not implemented by the MCH.	
7 1b RO Fast Back-to-Back (FB2B). Hardwired to 1. Device 0 does not physically connect PCI_A. This bit is set to 1 (indicating fast back-to-back capability) so that the optim setting for PCI_A is not limited by the MCH.	
6:5 00b Reserved	
4 1b RO RO RO RO RO RO RO RO RO RO RO RO RO	「R ice
3:0 0h Reserved	

3.5.5 **RID**—Revision Identification Register (D0:F0)

Address Offset:	08h
Default:	See table below
Access:	RO
Size:	8 Bits

This register contains the revision number of the MCH Device 0.

Bits	Default, Access	Description
7:0	01h RO	Revision Identification Number (RID). This is an 8-bit value that indicates the revision identification number for the MCH Device 0. 01h = A-1 Stepping

3.5.6 SUBC—Sub-Class Code Register (D0:F0)

Address Offset:	0Ah
Default:	00h
Access:	RO
Size:	8 Bits

This register contains the Sub-Class Code for the MCH Device 0.

Bits	Default, Access	Description
7:0	00h RO	Sub-Class Code (SUBC). This is an 8-bit value that indicates the category of Bridge into which the MCH falls. 00h = Host Bridge.

3.5.7 BCC—Base Class Code Register (D0:F0)

Address Offset:	0Bh
Default:	06h
Access:	RO
Size:	8 Bits

This register contains the Base Class Code of the MCH Device 0.

Bits	Default, Access	Description
7:0	06h RO	Base Class Code (BASEC). This is an 8-bit value that indicates the Base Class Code for the MCH. 06h = Bridge device.

3.5.8 MLT—Master Latency Timer Register (D0:F0)

Address Offset:0DhDefault:00hAccess:ReservedSize:8 Bits

Device 0 in the MCH is not a PCI master. Therefore, this register is not implemented.

Bits	Default, Access	Description
7:0	00h	Reserved

3.5.9 HDR—Header Type Register (D0:F0)

Address Offset:	0Eh
Default:	00h
Access:	RO
Size:	8 Bits

This register identifies the header layout of the configuration space. No physical register exists at this location.

Bits	Default, Access	Description
7.0	00h	PCI Header (HDR). This read only field indicates whether the MCH is a multi-function device.
7:0	RO	00h = Single Function Device (Function 1 is disabled in address offset E0h, bit 0) 80h = Multi Function Device (Function 1 is enabled in address offset E0h, bit 0)

3.5.10 SVID—Subsystem Vendor Identification Register (D0:F0)

Address Offset:	2C–2Dh
Default: Access:	0000h R/WO
Size:	16 Bits

This value is used to identify the vendor of the subsystem.

Bits	Default, Access	Description
15:0	0000h R/WO	Subsystem Vendor ID (SUBVID). This field should be programmed during boot-up to indicate the vendor of the system board. After it has been written once, it becomes read only.

3.5.11 SID—Subsystem Identification Register (D0:F0)

Address Offset:	2E–2Fh
Default:	0000h
Access:	R/WO
Size:	16 Bits

This value is used to identify a particular subsystem.

Bits	Default, Access	Description
15:0	0000h R/WO	Subsystem ID (SUBID). This field should be programmed during BIOS initialization. After it has been written once, it becomes read only.

3.5.12 CAPPTR—Capabilities Pointer Register (D0:F0)

Address Offset:	34h
Default:	40h
Access:	RO
Size:	8 Bits

This register provides the offset pointer to the location where the first set of capabilities registers is located.

Bits	Default, Access	Description
7:0	40h RO	Capabilities Pointer. Pointer to Platform Dependant Capabilities Identification register block, the first of the chain of capabilities.

3.5.13 MCHCAP—MCH Capabilities Structure Register (D0:F0)

Address Offset:	40–44h
Default:	00_0105_0009h
Access:	RO
Size:	40 Bits

This register provides the capabilities information for the MCH.

Bits	Default, Access	Description
39:29	000h	Reserved
28	1b RO	 Single-Channel DDR Support. This field indicates the DDR channel modes supported by the device. 0 = Only dual-channel mode is supported. 1 = Both single- and dual-channel are supported.
27:24	1h RO	CAPID Version. This field has the value 1h to identify the first revision of the CAPID register definition.
23:16	05h RO	CAPID Length. This field has the value 05h to indicate the structure length of 5 bytes.
15:8	00h RO	Next Capability Pointer. This field points to the next Capability ID in this device, which is none.
7:0	09h RO	CAP_ID. This field has the value 09h to identify the CAP_ID assigned by the PCI SIG for vendor dependent capability pointers.

3.5.14 MCHCFG—MCH Configuration Register (D0:F0)

Address Offset:	50–51h
Default:	0000h or 0004h
Access:	R/W
Size:	16 Bits

This register controls how the MCH tracks and routes system bus transactions.

Bits	Default, Access	Description
15:13	000b R/W	Number of Stop Grant Cycles (NSG). These bits indicate the number of Stop Grant transactions expected on the system bus before a Stop Grant Acknowledge packet is sent to the Intel [®] ICH3-S. This field is programmed by the BIOS after it has enumerated the processors and before it has enabled Stop Clock generation in the ICH3-S. Once this field has been set, it should not be modified. Note that this register is read/write and not Write-once as in some implementations. 000 = HI_A Stop Grant generated after 1 Stop Grant 001 = HI_A Stop Grant generated after 2 Stop Grant 010 = HI_A Stop Grant generated after 3 Stop Grant 011 = HI_A Stop Grant generated after 4 Stop Grant 012 = HI_A Stop Grant generated after 4 Stop Grant

Bits	Default, Access	Description	
12:6	000000b	Reserved	
5	0b R/W	MDA Present (MDAP). This bit works with the VGA enable bits in the BCTRL registers of Devices 2–4 to control the routing of processor initiated transactions targeting MDA compatible I/O and memory address ranges. This bit should not be set if none of the VGA enable bits are set. When none of the VGA enable bits are set, accesses to I/O address range x3BCh–x3BFh are forwarded to HI_A. When the VGA enable bit is not set, accesses to I/O address range x3BCh–x3BFh are forwarded to HI_B–D if the address is within the corresponding IOBASE and IOLIMIT and ISA enable bit is not set; otherwise, they are forwarded to HI_A. MDA resources are defined as the following: Memory: 0B0000h–0B7FFFh I/O: 3B4h, 3B5h, 3B8h, 3B9h, 3BAh, 3BFh, (including ISA address aliases, A[15:10] are not used in decode) Any I/O reference that includes the I/O locations listed above, or their aliases, will be forwarded to the hub interface even if the reference includes I/O locations not listed above. The following table shows the behavior for all combinations of MDA and VGA: VGA MDA Behavior 0 0 All References to VGA go to device with VGA enable set. MDA-only references (I/O address 3BFh and aliases) will go to HI_A. 1 1 VGA References go to the HI which has its VGAEN bit set. MDA References go to HI_A.	
		Throttled-Write occurred.	
4	0b R/W	 0 = Writing a zero clears this bit. 1 = This bit is set when a write is throttled. This bit is set when the maximum allowed number of writes has been reached during a time-slice and there is at least one more write to be completed. 	
3	0b	Reserved	
2	0b RO	In-Order Queue Depth (IOQD). This bit reflects the value sampled on HA7# on the de- assertion of the CPURST#. It indicates the depth of the processor bus in-order queue.When HA7# is sampled low, then IOQD is set to 1 indicating that the depth of the processor bus In-Order Queue is configured to the maximum allowed by the processor protocol (i.e., 12), thereby allowing the pipelining of up to 12 cycles on the host bus. When HA7# is sampled high, then IOQD is set to 0 indicating that the depth of the processor bus In-Order Queue is set to 1 which indicates that there will be no pipelining of cycles on the host bus.Queue depthIOQDHA7#1210101	
<u> </u>		APIC Memory Range Disable (APICDIS).	
1	0b R/W	 0 = MCH sends cycles between 0_FEC0_0000 and 0_FEC7_FFFF to HI_A, while accesses between 0_FEC8_0000 and 0_FEC8_0FFF are sent to HI_B, accesses between 0_FEC8_1000 and 0_FEC8_1FFF are sent to HI_C, accesses between 0_FEC8_2000 and 0_FEC8_2FFF are sent to HI_D. 1 = MCH forwards accesses to the IOxAPIC regions to the appropriate interface, as specified by the memory and PCI configuration registers. 	
0	0b	Reserved	

3.5.15 MCHCFGNS—MCH Configuration Register (D0:F0)

Address Offset:52–53hDefault:0000hAccess:RO, R/WSize:16 Bits

This register controls the mode and status of the DRAM memory scrubber.

Bits	Default, Access	Description
15:4	000h	Reserved
3	0b RO	 Scrub Complete. BIOS should poll this bit after enabling auto-initialization to determine when all the ECC has been written to the DRAM is good. Note that this bit is set when the scrub unit completes a complete cycle through DRAM, and is only reset by Hard Reset or Power Good reset. 1 = The scrub unit sets this bit to 1 when it has completed scrubbing through all DRAM (plus 32 scrubs to ensure the writes have been flushed to DRAM).
2:1	00b R/W	 Scrub Rate. These two bits determine the scrub counter time. For DRAM auto-initialization, these bits should be programmed with 11. For the periodic mode that provides normal DRAM scrubbing, these bits should be programmed to 10b. 00 = Initialize ECC at fastest possible rate. 01= Reserved 10 = 32-k clocks, normal operation 11 = Initialize Data to Zero with ECC at fastest possible rate
0	0b R/W	Scrub Enable. 0 = Disable. 1 = Enable.

3.5.16 FDHC—Fixed DRAM Hole Control Register (D0:F0)

58h
00h
R/W
8 bits

This register controls a fixed DRAM hole from 15 MB - 16 MB.

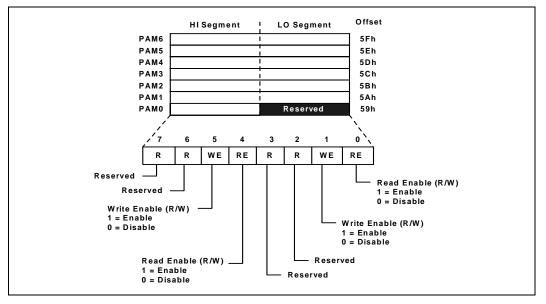
Bits	Default, Access	Description
7	0b R/W	 Hole Enable (HEN). This field enables a memory hole in DRAM space. The DRAM that lies "behind" this space is not remapped. 0 = No memory hole 1 = Memory hole from 15 MB to 16 MB. Accesses to this range will be sent to HI_A.
6:0	00h	Reserved

3.5.17 PAM[6:0]—Programmable Attribute Map Registers (D0:F0)

Address Offset:	59–5Fh (PAM0–PAM6)
Default:	00h
Access:	R/W
Size:	8 Bits each

The MCH allows programmable memory attributes on 13 *legacy* memory segments of various sizes in the 768-KB to 1-MB address range. Seven Programmable Attribute Map (PAM) registers are used to support these features. Cacheability of these areas is controlled via the MTRR registers in the processor. Two bits are used to specify memory attributes for each memory segment. These bits apply to both host accesses and PCI initiator accesses to the PAM areas. These attributes are:

- RE Read Enable. When RE = 1, the CPU read accesses to the corresponding memory segment are claimed by the MCH and directed to main memory. Conversely, when RE = 0, the host accesses are directed to HI_A.
- WE Write Enable. When WE = 1, the host write accesses to the corresponding memory segment are claimed by the MCH and directed to main memory. Conversely, when WE = 0, write accesses are directed to HI_A.


The RE and WE attributes permit a memory segment to be Read Only, Write Only, Read/Write, or disabled. For example, if a memory segment has RE = 1 and WE = 0, the segment is Read Only.

The MCH forwards to main memory any hub interface_A–D initiated accesses to the PAM areas. At the time that hub interface accesses to the PAM region may occur, the targeted PAM segment must be programmed to be both readable and writeable. It is illegal to issue a hub initiated transaction to a PAM region with the associated PAM register not set to 11. Each of these regions has a 2-bit field. The two bits that control each region have the same encoding.

Bits	Default, Access	Description
7:6	00b	Reserved
5:4	00b R/W	Attribute Register (HIENABLE). This field controls the steering of read and write cycles that address the BIOS. 00 = DRAM Disabled - All accesses are directed to HI_A 01 = Read Only - All Reads are serviced by DRAM. All Writes are forwarded to HI_A 10 = Write Only - All writes are sent to DRAM. Reads are serviced by HI_A 11 = Normal DRAM operation - All reads and writes are serviced by DRAM
3:2	00b	Reserved
1:0	00b R/W	PAM0. Reserved PAM[6:1]. See HIENABLE definition

Each PAM register controls two regions, typically 16 KB in size.

Figure 3-1. PAM Registers

Table 3-3. PAM Associated Attribute Bits

PAM Reg	Attribu	te Bits	Memory Segment	Comments	Offset
PAM0 3:0, 7:6	Rese	rved			59h
PAM0 5:4	WE	RE	0F0000h – 0FFFFFh	BIOS Area	59h
PAM1 3:2, 7:6	Rese	rved		Reserved	5Ah
PAM1 1:0	WE	RE	0C0000h – 0C3FFFh	BIOS Area	5Ah
PAM1 5:4	WE	RE	0C4000h – 0C7FFFh	BIOS Area	5Ah
PAM2 3:2, 7:6	Rese	rved		Reserved	5Bh
PAM2 1:0	WE	RE	0C8000h – 0CBFFFh	BIOS Area	5Bh
PAM2 5:4	WE	RE	0CC000h – 0CFFFFh	BIOS Area	5Bh
PAM3 3:2, 7:6	Rese	rved		Reserved	5Ch
PAM3 1:0	WE	RE	0D0000h – 0D3FFFh	BIOS Area	5Ch
PAM3 5:4	WE	RE	0D4000h – 0D7FFFh	BIOS Area	5Ch
PAM4 3:2, 7:6	Rese	rved		Reserved	5Dh
PAM4 1:0	WE	RE	0D8000h – 0DBFFFh	BIOS Area	5Dh
PAM4 5:4	WE	RE	0DC000h – 0DFFFFh	BIOS Area	5Dh
PAM5 3:2, 7:6	Rese	rved		Reserved	5Eh
PAM5 1:0	WE	RE	0E0000h – 0E3FFFh	BIOS Extension	5Eh
PAM5 5:4	WE	RE	0E4000h – 0E7FFFh	BIOS Extension	5Eh
PAM6 3:2, 7:6	Rese	rved		Reserved	5Fh
PAM6 1:0	WE	RE	0E8000h – 0EBFFFh	BIOS Extension	5Fh
PAM6 5:4	WE	RE	0EC000h – 0EFFFFh	BIOS Extension	5Fh

3.5.18 DRB[0:7]—DRAM Row Boundary Register (D0:F0)

Address Offset:	60–67h
Default:	00h
Access:	R/W
Size:	8 Bits each

The DRAM Row Boundary Register defines the upper boundary address of each DRAM row with a granularity of 64 MB in dual-channel mode or 32 MB in single-channel mode. Each row has its own single-byte DRB register. For example, a value of 1 in DRB0 indicates that 64 MB (dual-channel mode), or 32 MB (single-channel mode) of DRAM has been populated in the first row. In dual-channel mode, the row spans a matched DIMM pair.

Bits	Default, Access	Description
7:0	00h R/W	DRAM Row Boundary Address. This 8-bit value defines the upper address for each DRAM row. This 8-bit value is compared against a set of address lines to determine the upper address limit of a particular row. This field corresponds to bits 33:26 of the address in dual-channel mode and 32:25 in single-channel mode. A DRAM row is addressed if the address is below the row's DRAM row boundary address and greater than or equal to the previous row's DRAM row boundary address.

DIMM	Even Row (Sir	ngle Bank)	Odd Row (present if Double Bank)		
DIVIN	Row Number	Address of DRA	Row Number	Address of DRA	
DIMM1	Row0	60h	Row1	61h	
DIMM2	Row2	62h	Row3	63h	
DIMM3	Row4	64h	Row5	65h	
DIMM4	Row6	66h	Row7	67h	

- DRB0 = Total memory in row0 (in 64-MB increments for dual-channel mode, 32-MB increments for single-channel mode)
- DRB1 = Total memory in row0 + row1 (in 64-MB increments for dual-channel mode, 32-MB increments for single-channel mode)
- DRB7 = Total memory in row0 + row1 + row2 + row3 + row4 + row5 + row6 + row7 (in 64-MB increments for dual-channel mode, 32-MB increments for single-channel mode)

The row referred to by this register is defined by the DIMM chip select used. Double-sided DIMMs use both Row0 and Row1 (for CS0# and CS1#), even though there is one physical slot for the row. Single-sided DIMMs use only the even row number, since single-sided DIMMs only support CS0#. For single-sided DIMMs, the value BIOS places in the odd row should equal the same value as what was placed in the even row field. A row is defined as 128-bit wide interface consisting of two identical DIMMs in dual-channel mode, or a 64-bit wide interface consisting of one DIMM in single-channel mode.

Note: When maximum physical memory is populated (DRB[7]=FFh), a small amount of memory cannot be addressed. The maximum amount of physical memory is limited to 16 GB – 64 MB in dual-channel mode, or 8 GB – 32 MB in single-channel mode.

3.5.19 DRA[3:0]—DRAM Row Attribute Register (D0:F0)

Address Offset:	70–73h
Default:	00h
Access:	R/W
Size:	8 Bits

The DRAM Row Attribute Register defines the page sizes to be used for each row of memory. Each nibble of information in the DRA registers describes the page size of a row. For this register, a row is defined by the Chip Select used by the DIMM, so that a double-sided DIMM would have both an even and an odd entry. For single-sided DIMMs, only the even side is used.

Row 0, 1:	70h
Row 2, 3:	71h
Row 4, 5:	72h
Row 6, 7:	73h

Bits	Default, Access	Description
7	0b R/W	Device Width for Odd-numbered Row. This bit defines the width of the DDR-SDRAM devices populated in this row. 0 = x8 DIMM 1 = x4 DIMM This bit field is used in the mapping of DQS signals to DQ signals, in the DDR-SDRAM receive path. Refer to the DQ-DQS mapping table in Section 5.5.
6:4	000b R/W	Row Attribute for Odd-numbered Row. This 3-bit field defines the page size of the corresponding row.010 = 8 KB (dual-channel) or 4 KB (single-channel)011 = 16 KB (dual-channel) or 8 KB (single-channel)100 = 32 KB (dual-channel) or 16 KB (single-channel)101 = 64 KB (dual-channel) or 32 KB (single-channel)011 = 64 KB (dual-channel) or 32 KB (single-channel)011 = 64 KB (dual-channel) or 32 KB (single-channel)
3	0b R/W	Device Width for Even-numbered Row. This bit defines the width of the DDR-SDRAM devices populated in this row.0 = x8 DIMM1 = x4 DIMMThis bit field is used in the mapping of DQS signals to DQ signals, in the DDR-SDRAM receive path. Refer to the DQ-DQS mapping table in Section 5.5.
2:0	000b R/W	Row Attribute for Even-numbered Row. This 3-bit field defines the page size of the corresponding row.010 = 8 KB (dual-channel) or 4 KB (single-channel)011 = 16 KB (dual-channel) or 8 KB (single-channel)100 = 32 KB (dual-channel) or 16 KB (single-channel)101 = 64 KB (dual-channel) or 32 KB (single-channel)011 = 64 KB (dual-channel) or 32 KB (single-channel)

3.5.20 DRT—DRAM Timing Register (D0:F0)

Address Offset:	78–7Bh
Default:	00000010h
Access:	R/W
Size:	32 Bits

This register controls the timing of the DRAM controller.

Bits	Default, Access	Description
31:30	00b	Reserved
		Back to Back Write-Read Turn Around. This field determines the minimum number of CMDCLK (command clocks, at 100/133 MHz) between Write-Read commands. It applies to WR-RD pairs to different rows. WR-RD pair to same row has sufficient turnaround due to t_{WTR} timing parameter. The purpose of this bit is to control the turnaround time on the DQ bus.
29	0b R/W	0 = 3 (5) clocks between WR-RD commands (2 turnaround clocks on DQ)
	10,00	1 = 2 (4) clocks between WR-RD commands (1 turnaround clock on DQ)
		The number in parenthesis is for single-channel operation.
		The bigger turn-around is used in large configurations, where the difference in total channel delay between the fastest and slowest DIMM is large.
	0b R/W	Back to Back Read-Write Turn Around. This field determines the minimum number of CMDCLK (command clocks, at 100/133 MHz) between Read-Write commands. It applies to RD-WR pairs to any destination, in same or different rows. The purpose of this bit is to control the turnaround time on the DQ bus.
28		0 = 5 (7) clocks between RD-WR commands (2 turnaround clocks on DQ)
		1 = 4 (6) clocks between RD-WR commands (1 turnaround clock on DQ)
		The number in parenthesis is for single-channel operation.
		The bigger turn-around is used in large configurations, where the difference in total channel delay between the fastest and slowest DIMM is large.
	0b R/W	Back to Back Read Turn Around. This field determines the minimum number of CMDCLK (command clocks, at 100/133 MHz) between two Reads destined to different rows. The purpose of this bit is to control the turnaround time on the DQ bus.
07		0 = 4 (6) clocks between RD commands to different rows (2 turnaround clocks on DQ)
27		1 = 3 (5) clocks between RD commands to different rows (1 turnaround clock on DQ)
		The number in parenthesis is for single-channel operation.
		The bigger turn-around is used in large configurations, where the difference in total channel delay between the fastest and slowest DIMM is large.
26:24	000b R/W	Read Delay (t_{RD}). This field controls the number of 100/133 MHz clocks elapsed from the Read Command launch on the DDR interface until returned data is set to be driven on the system bus. The following t_{RD} values are supported.
		000 = 7 clocks
		001 = 6 clocks
		010 = 5 clocks
		Others = Reserved
23:19	00h	Reserved

Bits	Default, Access	Description	
18:16	000b R/W	DRAM Idle Timer. This field determines the number of clocks the DRAM controller will remain in the idle state before it begins precharging all pages. 000 = Infinite 001 = 0 clocks 011 = 16 DRAM clocks Others = Reserved	
15:11	00h	Reserved	
10:9	00b R/W	Activate to Precharge delay (t _{RAS}). This bit controls the number of DRAM clocks for t _{RAS} . 00 = 7 Clocks 01 = 6 Clocks 10 = 5 Clocks 11 = Reserved	
8:6	000b	Reserved	
5:4	01b R/W	CAS# Latency (t _{CL}). The number of clocks between the rising edge used by DRAM to sample the Read Command and the rising edge that is used by the DRAM to drive read data. Note that for a CL of 2.5, the read-to-write turnaround time must be programmed to 5. 00 = 2.5 DRAM Clocks 01 = 2 DRAM Clocks 10 = Reserved 11 = Reserved	
3	0b R/W	Write RAS# to CAS# Delay (t _{RCD}). This bit controls the number of clocks inserted between a row activate command and a write command to that row. 0 = 3 DRAM Clocks 1 = 2 DRAM Clocks	
2:1	00b R/W	Read RAS# to CAS# Delay (t _{RCD}). This bit controls the number of clocks inserted between a row activate command and a read command to that row. The same value should be used for this field as for bit 3 above. 00 = Reserved 01 = Reserved 10 = 3 DRAM Clocks 11 = 2 DRAM Clocks	
0	0b R/W	DRAM RAS# Precharge (t _{RP}). This bit controls the number of clocks that are inserted between a row precharge command and an activate command to the same row. 0 = 3 DRAM Clocks 1 = 2 DRAM Clocks	

3.5.21 DRC—DRAM Controller Mode Register (D0:F0)

7C–7Fh
0044_0009h
R/W
32 Bits

This register controls the mode of the DRAM controller.

Bits	Default, Access	Description	
31:30	00b	Reserved	
29	0b R/W	 Initialization Complete (IC). This bit is set by BIOS to notify the memory controller when the memory initialization sequence has been completed (i.e., JEDEC Mode Register Set initialization and ECC initialization). 0 = No refresh cycles will occur on the DDR interface regardless of the RMS field setting 1 = Initialization complete, refresh cycles will occur on the DDR interface according to the Refresh Mode Select bit field (the RMS field are bits 10:8 of this register) value. 	
28:23	00h	Reserved	
22	1b R/W	Number of Channels (CHAN). This field determines the number of DDR channels that the MCH supports. BIOS should set these bits depending on how many channels are populated, and if the capability is allowed (Device 0, Function 0, Offset 40h). 0 = One channel operation 1 = Two channel operation	
21:20	00b R/W	 DRAM Data Integrity Mode (DDIM). These bits select one of four DRAM data integrity modes. 00 = Non ECC mode, no ECC correction is done and no errors are flagged in DRAM_FERR or DRAM_NERR. 01 = Reserved 10 = Error checking, with correction enabled 11 = Reserved 	
19:18	01b RO	 DRB Granularity (DRBG). The value in the DRBG field sets the meaning given to the values in the set of DRB registers. This value changes when the value in bit 22 changes. 00 = 32 MB quantities (single-channel mode) 01 = 64 MB quantities (dual-channel mode) 10,11 = Reserved 	
17	0b	Reserved	
16	0b R/W	Command Per Clock – Address/Control Assertion Rule (CPC). Defines the number of clock cycles the MA_x, RAS_x#, CAS_x#, WE_x# signals are asserted. 0 = 2n rule (MA_x[12:0], RAS_x#, CAS_x#, WE_x# asserted for 2 clock cycles) 1 = 1n rule (MA_x[12:0], RAS_x#, CAS_x#, WE_x# asserted for 1 clock cycle)	
15:11	00h	Reserved	
10:8	00b R/W	Refresh Mode Select (RMS). This field determines whether refresh is enabled and, ifso, at what rate refreshes will be executed.000 = Refresh Disabled001 = Refresh Enabled. Refresh interval 15.6 μsec010 = Refresh Enabled. Refresh interval 7.8 μsec011 = Refresh Enabled. Refresh interval 64 μsec111 = Refresh Enabled. Refresh interval 64 clocks (fast refresh mode)Others = Reserved	

Bits	Default, Access	Description	
7	0b	Reserved	
6:4	0b 000b R/W	 Reserved Mode Select (SMS). These bits select the special operational mode of the DRAM interface. The special modes are intended for initialization at power up. 000 Reserved. 001 NOP Command Enable – All processor cycles to DRAM result in a NOP command on the DRAM interface. 010 All Banks Precharge Enable – All processor cycles to DRAM result in an "all banks precharge" command on the DRAM interface. 011 Mode Register Set Enable – All processor cycles to DRAM result in a "mode register" set command on the DRAM interface. 011 Mode Register Set Enable – All processor cycles to DRAM result in a "mode register" set command on the DRAM interface. Host address lines are mapped to SDRAM address lines to specify the command sent. For dual-channel configurations, host address lines [15:5] are mapped to MA_x[12:11, 9:1]. MA_x10 and MA_x0 are driven to 0 resulting in burst of four MRS programming. For single-channel configurations, host address lines [14:5] are mapped to MA_x[12:11, 9:2]. MA_x10 is driven to 0, and MA_x[1:0] are driven to 1 resulting in burst of eight MRS programming. 100 Extended Mode Register Set Enable – All processor cycles to SDRAM result in an "extended mode register set" command on the DRAM interface (DDR only). Host address lines are mapped to SDRAM address lines in order to specify the command sent. HA[15:3]# are typically mapped to MA_x[12:0]. 101 Reserved. 	
		110 CAS Before RAS Refresh Enable – In this mode all processor cycles to DRAM result in a CBR cycle on the SDRAM interface.	
		111 Normal operation.	
3:0	9h	Reserved	

3.5.22 CKDIS—CK / CK# Disable Register (D0:F0)

Address Offset:	8Ch
Default:	80h
Access:	RO, R/W
Size:	8 Bits

Bits	Default, Access	Description	
7	1b R/W	 DDR Frequency. This bit is set by the BIOS to match the DDR frequency. It is used by the refresh timer to set the refresh period properly according to the number of clocks per microsecond. This is an indicator bit to the DDR logic only. It does not change the DDR frequency. 0 = 100 MHz (200 MHz data rate) 1 = 133 MHz (266 MHz data rate) 	
6:4	0h	Reserved	
3:0	0h R/W	CK/CK# Disable. Each bit corresponds to a CK/CK# pair of pins on each channel. When set to 1 these bits turn off the corresponding CK/CK# pair on both channels. CK is driven low and CK# is driven high. This feature is intended to reduce EMI due to clocks toggling to DIMMs that are not populated. See Section 5.5.5 for the CK to DIMM mapping.	

3.5.23 CFGCTL—Configuration Control Register (D0:F0)

Address Offset:	9Ch
Default:	00h
Access:	R/W
Size:	8 Bits

This register may only be written to at boot time when there is no traffic to or from the HI. The MCH does not support turning off a HI and then turning it back on. The MCH does not support changing the bits in this register while there is traffic outstanding from that HI. These bits should only be changed when there is no outstanding traffic to that HI.

Bits	Default, Access	Description
7:3	00000b	Reserved
2	1b R/W	 HI_D Enable (HIDEN). This bit is set to 1 (via MCH hardware) if the presence detect mechanism detects a device on HI_D. The state of the presence detector is latched on the de-asserting edge of PCIRST#. The state of this bit can be read and over written via software. This bit is written on every reset, not just the first Power Good reset. 0 = The configuration space associated with MCH Device 4 is hidden, returning all ones for all configuration register reads just as if the cycle terminated with a master abort on PCI. The I/O buffers associated with MCH Device 4 is accessible. The I/O associated with MCH Device 4 is accessible. The I/O
		buffers are enabled.
1	0h R/W	 HI_C Enable (HICEN). This bit is set to 1 (via MCH hardware) if the presence detect mechanism detects a device on HI_C. The state of the presence detector is latched on the de-asserting edge of PCIRST#. The state of this bit can be read and over-written via software. This bit is written on every reset, not just the first Power Good reset. 0 = The configuration space associated with MCH Device 3 is hidden, returning all ones for all configuration register reads just as if the cycle terminated with a master abort on PCI. The I/O buffers associated with HI_C will be disabled and tri-stated. Compensation is disabled. 1 = The configuration space associated with MCH Device 3 is accessible. The I/O buffers are enabled.
0	0h R/W	 HI_B Enable (HIBEN). This bit is set to 1 (via MCH hardware) if the presence detect mechanism detects a device on HI_B. The state of the presence detector is latched on the de-asserting edge of PCIRST#. The state of this bit can be read and over-written via software. This bit is written on every reset, not just the first Power Good reset. 0 = The configuration space associated with MCH Device 2 is hidden, returning all ones for all configuration register reads just as if the cycle terminated with a master abort on PCI. The I/O buffers associated with HI_B will be disabled and tri-stated. Compensation is disabled. 1 = The configuration space associated with MCH Device 2 is accessible. The I/O buffers are enabled.

3.5.24 SMRAMC—System Management RAM Control Register (D0:F0)

Address Offset:9DhDefault:02hAccess:RO, R/W, LSize:8 Bits

The SMRAMC register controls how accesses to Compatible and Extended SMRAM spaces are treated. The open, close, and lock bits function only when G_SMRAME bit is set to 1. The Open bit must be reset before the lock bit is set.

Bits	Default, Access	Description	
7	0b	Reserved	
6	0b R/W	SMM Space Open (D_OPEN). When D_OPEN=1 and D_LCK=0, the SMM space DRAM is made visible even when SMM decode is not active. This is intended to help BIOS initialize SMM space. Software should ensure that D_OPEN=1 and D_CLS=1 are not set at the same time.	
5	0b R/W	SMM Space Closed (D_CLS). When D_CLS = 1 SMM space DRAM is not accessible to data references, even if SMM decode is active. Code references may still access SMM space DRAM. This allows SMM software to reference through SMM space to update the display even when SMM is mapped over the VGA range. Software should ensure that D_OPEN=1 and D_CLS=1 are not set at the same time. Note that the D_CLS bit only applies to Compatible SMM space.	
4	0b R/W	SMM Space Locked (D_LCK). When D_LCK is set to 1, D_OPEN is reset to 0 and D_LCK, D_OPEN, H_SMRAME, TSEG_SZ and TSEG_EN become read only. D_LCK can be set to 1 via a normal configuration space write but can only be cleared by a Full Reset. The combination of D_LCK and D_OPEN provide convenience and security. The BIOS can use the D_OPEN function to initialize SMM space and then use D_LCK to "lock down" SMM space in the future so that no application software (or the BIOS itself) can violate the integrity of SMM space, even if the program has knowledge of the D_OPEN function.	
3	0b L	Global SMRAM Enable (G_SMRAME). If set to 1, then Compatible SMRAM functions are enabled, providing 128 KB of DRAM accessible at the A0000h address while in SMM (ADS# with SMM decode). To enable Extended SMRAM function this bit must be set to 1. Refer to Section 4.3 for more details regarding SMM. Once D_LCK is set, this bit becomes read only.	
2:0	010b RO	Compatible SMM Space Base Segment (C_BASE_SEG). This field indicates the location of SMM space. SMM DRAM is not remapped. It is simply made visible if the conditions are right to access SMM space; otherwise, the access is forwarded to HI. Since the MCH supports only the SMM space between A0000h and BFFFFh, this field is hardwired to 010.	

3.5.25 ESMRAMC—Extended System Management RAM Control Register (D0:F0)

9Eh
38h
R/W, R/WC, R/W/L
8 Bits

The Extended SMRAM register controls the configuration of Extended SMRAM space. The Extended SMRAM (E_SMRAM) memory provides a write-back cacheable SMRAM memory space that is above 1 MB.

Bits	Default, Access	Description	
7	0b R/W/L	Enable High SMRAM (H_SMRAME). This bit controls the SMM memory space location (i.e., above 1 MB or below 1 MB). When G_SMRAME is 1 and H_SMRAME is set to 1, the high SMRAM memory space is enabled. SMRAM accesses within the range 0FEDA0000h to 0FEDAFFFFh are remapped to DRAM addresses within the range 000A0000h to 000BFFFFh. Once D_LCK has been set, this bit becomes read only.	
6	0b R/WC	 Invalid SMRAM Access (E_SMERR). 1 = This bit is set when the processor has accessed the defined memory ranges in Extended SMRAM (High Memory and T-segment) while not in SMM space and with the D_OPEN bit = 0. It is software's responsibility to clear this bit. NOTE: The software must write a 1 to this bit to clear it. 	
5:3	111b	Reserved	
2:1	00b R/W/L	TSEG Size (TSEG_SZ). This field selects the size of the TSEG memory block, if enabled. Memory from the top of DRAM space (TOLM – TSEG_SZ) to TOLM is partitioned away so that it may only be accessed by the processor interface and only then when the SMM bit is set in the request packet. Non-SMM accesses to this memory region are sent to the hub interface when the TSEG memory block is enabled. Once D_LCK has been set, this bit becomes read only. 00 = (TOLM - 128 KB) to TOLM 01 = (TOLM - 256 KB) to TOLM 10 = (TOLM - 512 KB) to TOLM 11 = (TOLM - 1 MB) to TOLM	
0	0b R/W/L	TSEG Enable (TSEG_EN). This bit enables SMRAM memory for Extended SMRAM space only. When G_SMRAME =1 and TSEG_EN = 1, the TSEG is enabled to appear in the appropriate physical address space. Note that once D_LCK is set, this bit becomes read only.	

3.5.26 TOLM—Top of Low Memory Register (D0:F0)

Address Offset:	C4–C5h
Default:	0800h
Access:	R/W
Size:	16 Bits

This register contains the maximum address below 4 GB that should be treated as main memory, and is defined on a 128-MB boundary. Normally, it is set below the areas configured for the hub interface and PCI memory and the graphics aperture. Note that the memory address found in DRB7 reflects the top of total memory. In the event that the total combined DRAM and PCI space is less than 4 GB, these two registers will be set the same.

Bits	Default, Access	Description
15:11	00001b R/W	Top of Low Memory (TOLM). This register contains the address that corresponds to bits 31:27 of the maximum DRAM memory address that lies below 4 GB. Configuration software should set this value to either the maximum amount of memory in the system or to the minimum address allocated for PCI memory, whichever is smaller. Address bits 15:0 are assumed to be 0000h for the purposes of address comparison. Addresses equal to or greater than the TOLM and less than 4 GB, are treated as accesses to the hub interface. All accesses less than the TOLM are treated as DRAM accesses (except for the 15 MB–16 MB or PAM gaps).
10:0	000h	Reserved

3.5.27 REMAPBASE—Remap Base Address Register (D0:F0)

Address Offset:	C6–C7h
Default:	03FFh
Access:	R/W
Size:	16 Bits

This register specifies the lower boundary of the remap window. Refer to Section 4.4 for more information.

Bits	Default, Access	Description
15:10	00h	Reserved
9:0	3FFh R/W	Remap Base Address [35:26]. The value in this register defines the lower boundary of the remap window. The remap window is inclusive of this address. A[25:0] of the remap Base Address are assumed to be 0s. Thus, the bottom of the defined memory range will be aligned to a 64-MB boundary. When the value in this register is greater than the value programmed into the Remap Limit register, the Remap window is disabled.

3.5.28 **REMAPLIMIT**—Remap Limit Address Register (D0:F0)

Address Offset:C8h–C9hDefault:0000hAccess:R/WSize:16 Bits

This register specifies the upper boundary of the remap window.

Bits	Default, Access	Description
15:10	00h	Reserved
9:0	000h R/W	Remap Limit Address [35:26]. The value in this register defines the upper boundary of the remap window. The remap window is inclusive of this address. A[25:0] of the Remap Limit Address are assumed to be Fhs. Thus, the top of the defined memory range will be one less than a 64-MB boundary. When the value in this register is less than the value programmed into the Remap Base register, the remap window is disabled.

3.5.29 SKPD—Scratchpad Data Register (D0:F0)

Address Offset:	DE–DFh
Default:	0000h
Access:	R/W
Size:	16 Bits

This register contains bits that can be used for general purpose storage.

Bits	Default, Access	Description
15:0	0000h R/W	Scratchpad (SCRTCH). These bits are simply R/W storage bits that have no effect on the MCH functionality.

3.5.30 DVNP—Device Not Present Register (D0:F0)

Address Offset:	E0–E1h
Default:	1D1Dh
Access:	R/W
Size:	16 Bits

This register is used to control whether the Function 1 portions of the PCI configuration space for Devices 0, 2, 3, 4 are visible to software. If a device's Function 1 is disabled, that device will appear to have only 1 function (Function 0).

Bits	Default, Access	Description
15:5	0E8h	Reserved
4	1b R/W	Device 4, Function 1 Present. 0 = Present 1 = Not present
3	1b R/W	Device 3, Function 1 Present. 0 = Present 1 = Not present
2	1b R/W	Device 2, Function 1 Present. 0 = Present 1 = Not present
1	0b	Reserved
0	1b R/W	Device 0, Function 1 Present. 0 = Present 1 = Not present

3.6 Host RASUM Controller Registers (Device 0, Function 1)

This section describes the DRAM Controller registers for Device 0 (D0), Function 1 (F1). Table 3-4 provides the register address map for this device, function.

Warning: Address locations that are not listed in the table are considered reserved register locations. Writes to "Reserved" registers may cause system failure. Reads from "Reserved" registers may return a non-zero value.

Offset	Mnemonic	Register Name	Default	Туре
00–01h	VID	Vendor Identification	8086h	RO
02–03h	DID	Device Identification	2541h	RO
04–05h	PCICMD	PCI Command	0000h	R/W
06–07h	PCISTS	PCI Status	0000h	R/W0
08h	RID	Revision Identification	See register description	RO
0Ah	SUBC	Sub Class Code	00h	RO
0Bh	BCC	Base Class Code	FFh	RO
0Dh	MLT	Master Latency Timer	00h	_
0Eh	HDR	Header Type	00h	RO
2C–2Dh	SVID	Subsystem Vendor Identification	0000h	R/W0
2E–2Fh	SID	Subsystem Identification	0000h	R/W0
40–43h	FERR_GLOBAL	First Global Error	0000000h	R/W0
44–47h	NERR_GLOBAL	Nest Global Error	0000000h	R/W0
50h	HIA_FERR	HI_A First Error	00h	R/W0
52h	HIA_NERR	HI_A Next Error	00h	R/W
58h	SCICMD_HIA	SCI Command	00h	R/W
5Ah	SMICMD_HIA	SMI Command	00h	R/W
5Ch	SERRCMD_HIA	SERR Command	00h	R/W
60h	SYSBUS_FERR	System Bus First Error	00h	R/W0
62h	SYSBUS_NERR	System Bus Next Error	00h	R/W
68h	SCICMD_SYSBUS	SCI Command	00h	R/W
6Ah	SMICMD_SYSBUS	SMI Command	00h	R/W
6Ch	SERRCMD_SYSBUS	SERR Command	00h	R/W
80h	DRAM_FERR	DRAM First Error	00h	R/W0
82h	DRAM_NERR	DRAM Next Error	00h	R/W0
88h	SCICMD_DRAM	SCI Command	00h	R/W
8Ah	SMICMD_DRAM	SMI Command	00h	R/W
8Ch	SERRCMD_DRAM	SERR Command	00h	R/W
A0–A3h	DRAM_CELOG_ADD	DRAM First Correctable Memory Error Address	00000000h	RO
B0–B3h	DRAM_UELOG_ADD	DRAM First Uncorrectable Memory Error Address	00000000h	RO
D0–D1h	DRAM_CELOG_ SYNDROME	DRAM First Correctable Memory Error Syndrome	0000h	RO

Table 3-4. Host RASUM Controller Register Map (HI_A—D0:F1)

3.6.1 VID—Vendor Identification Register (D0:F1)

Address Offset:00–01hDefault:8086hStickyNoAccess:ROSize:16 Bits

The VID Register contains the vendor identification number. This 16-bit register combined with the Device Identification Register uniquely identifies any PCI device.

Bits	Default, Access	Description
15:0	8086h RO	Vendor Identification Device (VID). This register field contains the PCI standard identification for Intel, 8086h.

3.6.2 DID—Device Identification Register (D0:F1)

Address Offset:	02–03h
Default:	2541h
Sticky:	No
Access:	RO
Size:	16 Bits

This 16-bit register combined with the Vendor Identification register uniquely identifies any PCI device.

Bits	Default, Access	Description
15:0	2541h RO	Device Identification Number (DID). This 16-bit value is assigned to the MCH Host-HI Bridge Function 1.

3.6.3 PCICMD—PCI Command Register (D0:F1)

Address Offset:	04–05h
Default:	0000h
Sticky:	No
Access:	R/W
Size:	16 Bits

Since MCH Device 0 does not physically reside on a physical PCI bus, portions of this register are not implemented.

Bits	Default, Access	Description
15:9	00h	Reserved
		SERR Enable (SERRE). This bit is a global enable bit for Device 0, Function 1 (FERR, NERR) SERR messaging. The BIOS should use this bit for FERR/NERR support on new designs. This bit provides a superset of the functionality available in Device 0, Function 0 (address offset 04h, bit 8). The MCH does not have a SERR signal. The MCH communicates the SERR condition
8	0b R/W	by sending a SERR message over H_{L} to the Intel [®] ICH3-S. This was provided for older design compatibility or in case FERR/NERR is not used. 0 = Disable. A SERR message is not generated by the MCH for Device 0, Function 1
		 1 = Enable. MCH is enabled to generate SERR messages over HI_A for specific Device 0, Function 1 error conditions that are individually enabled in the SERRCMD_HIA, SERRCMD_FSB and SERRCMD_DRAM registers. The error flags are reported in the HIA_FERR, HIA_NERR, FSB_FERR, FSB_NERR, DRAM_FERR, DRAM_NERR and PCISTS registers.
7:0	00h	Reserved

3.6.4 PCISTS—PCI Status Register (D0:F1)

Address Offset:	06–07h
Default:	0000h
Sticky:	No
Access:	R/WC
Size:	16 Bits

PCISTS is a 16-bit status register that reports the occurrence of error events on Device 0's PCI interface. Since MCH Device 0 does not physically reside on a PCI bus, most bits are not implemented.

Bits	Default, Access	Description
15	0b	Reserved
14	0b R/WC	 Signaled System Error (SSE). 0 =SERR Not generated by MCH Device 0. 1 =MCH Device 0, Function 1 (FERR/ NERR) generates a SERR message over HI_A for any enabled Device 0, Function 1 error conditions. Device 0 error conditions are enabled in the PCICMD and SERRCMD_HIA, SERRCMD_FSB, SERRCMD_DRAM registers. Device 0 error flags are read/reset from the PCISTS or any of the following registers: HIA_FERR, HIA_NERR, FSB_FERR, FSB_NERR, DRAM_FERR, DRAM_NERR, FERR_GLOBAL, NERR_GLOBAL. NOTE: Software sets SSE to 0 by writing a 1 to this bit.
13:0	0000h	Reserved

3.6.5 **RID**—Revision Identification Register (D0:F1)

Address Offset:	08h
Default:	See table below
Sticky:	No
Access:	RO
Size:	8 Bits

This register contains the revision number of the MCH Device 0.

Bits	Default, Access	Description
7:0	00h RO	Revision Identification Number (RID). This is an 8-bit value that indicates the revision identification number for the MCH Device 0. This number will be the same as the RID for Function 0. 01h = A-1 Stepping.

3.6.6 SUBC—Sub-Class Code Register (D0:F1)

Address Offset:0AhDefault:00hSticky:NoAccess:ROSize:8 Bits

This register contains the Sub-Class Code for the MCH Device 0, Function 1.

Bits	Default, Access	Description
7:0	00h RO	Sub-Class Code (SUBC). This is an 8-bit value that indicates sub-class code for the MCH Device 0, Function 1. The code is 00h.

3.6.7 BCC—Base Class Code Register (D0:F1)

Address Offset:	0Bh
Default:	FFh
Sticky:	No
Access:	RO
Size:	8 Bits

This register contains the Base Class Code of the MCH Device 0, Function 1.

Bits	Default, Access	Description
7:0	FFh	Base Class Code (BASEC). This is an 8-bit value that indicates the Base Class Code for the MCH.
7.0	RO	FFh =Non-defined device. Since this function is used for error conditions, it does not fall into any other class.

3.6.8 MLT—Master Latency Timer Register (D0:F1)

Address Offset:	0Dh
Default:	00h
Sticky:	No
Access:	Reserved
Size:	8 Bits

Device 0 in the MCH is not a PCI master. Therefore, this register is not implemented.

Bits	Default, Access	Description
7:0	00h	Reserved

3.6.9 HDR—Header Type Register (D0:F1)

Address Offset:0EhDefault:00hSticky:NoAccess:ROSize:8 Bits

This register identifies the header layout of the configuration space.

Bits	Default, Access	Description
7:0	00h RO	PCI Header (HDR). Reads and writes to this location have no effect.

3.6.10 SVID—Subsystem Vendor Identification Register (D0:F1)

Address Offset:	2C–2Dh
Default:	0000h
Sticky:	No
Access:	R/WO
Size:	16 Bits

This value is used to identify the vendor of the subsystem.

Bits	Default, Access	Description
15:0	0000h R/WO	Subsystem Vendor ID (SUBVID). This field should be programmed during boot-up to indicate the vendor of the system board. After it has been written once, it becomes read only.

3.6.11 SID—Subsystem Identification Register (D0:F1)

Address Offset:	2E–2Fh
Default:	0000h
Sticky:	No
Access:	R/WO
Size:	16 Bits

This value is used to identify a particular subsystem.

Bits	Default, Access	Description
15:0	0000h R/WO	Subsystem ID (SUBID). This field should be programmed during BIOS initialization. After it has been written once, it becomes read only.

3.6.12 FERR_GLOBAL—First Global Error Register (D0:F1)

Address Offset:	40–43h
Default:	00000000h
Sticky:	Yes
Access:	R/WC
Size:	32 Bits

This register is used to report various error conditions. A SERR is generated on a 0-to-1 transition of any of these flags (if enabled by the ERRCMD and PCICMD registers). These bits are set regardless of whether or not the SERR is enabled and generated. This register stores the FIRST global error. Any future errors (NEXT errors) will be set in the NERR_Global Register. No further error bits in this register will be set until the existing error bit is cleared.

Note: To prevent the same error from being logged twice in FERR_GLOBAL and NERR_GLOBAL, a FERR_GLOBAL bit being set blocks the respective bit in the NERR_GLOBAL Register from being set. In addition, bits [18:16] are grouped such that if any of these bits are set in the FERR_GLOBAL Register, none of the bits [18:16] can be set in the NERR_GLOBAL Register. For example, if HI_A causes its respective FERR_GLOBAL bit to be set, any subsequent DDR, processor system bus (PSB), or HI_A error will not be logged in the NERR_GLOBAL Register. Each of these three bits are part of Device 0 status and having any one of them set in FERR_GLOBAL represents a "Device 0 First Error" occurred. This implementation blocks logging in NERR_GLOBAL of any subsequent "Device 0" errors, and allows only logging of subsequent errors that are from other devices.

Bits	Default, Access	Description
31:19	0000h	Reserved
18	0b R/WC	 DRAM Interface Error Detected. 0 = No DRAM interface error. 1 = MCH detected an error on the DRAM interface.
17	0b R/WC	HI_A Error Detected. 0 = No HI_A interface error. 1 = MCH detected an error on the HI_A.
16	0b R/WC	System Bus Error Detected.0 = No system bus interface error.1 = MCH detected an error on the System Bus.
15:5	000h	Reserved
4	0b R/WC	HI_D Error Detected. 0 = No HI_D interface error. 1 = MCH detected an error on HI_D.
3	0b R/WC	HI_C Error Detected. 0 = No HI_C interface error. 1 = MCH detected an error on HI_C.
2	0b R/WC	HI_B Error Detected. 0 = No HI_B interface error. 1 = MCH detected an error on HI_B.
1:0	00b	Reserved

3.6.13 NERR_GLOBAL—Next Global Error Register (D0:F1)

44–47h
00000000h
Yes
R/WC
32 Bits

The FIRST global error will be stored in FERR_GLOBAL. This register stores all future global errors. Multiple bits in this register may be set.

Note: To prevent the same error from being logged twice in FERR_GLOBAL and NERR_GLOBAL, a FERR_GLOBAL bit being set blocks the respective bit in the NERR_GLOBAL Register from being set. In addition, bits [18:16] are grouped such that if any of these bits are set in the FERR_GLOBAL Register, none of the bits [18:16] can be set in the NERR_GLOBAL Register. For example, if HI_A causes its respective FERR_GLOBAL bit to be set, any subsequent DDR, FSB, or HI_A error will not be logged in the NERR_GLOBAL Register. Each of these three bits are part of Device 0 status and having any one of them set in FERR_GLOBAL represents a "Device 0 First Error" occurred. This implementation blocks logging in NERR_GLOBAL of any subsequent "Device 0" errors, and allows only logging of subsequent errors that are from other devices.

Bits	Default, Access	Description	
31:19	0000h	Reserved	
18	0b R/WC	 DRAM Interface Error Detected. 0 = No DRAM interface error detected. 1 = The MCH has detected an error on the DRAM interface. 	
17	0b R/WC	HI_A Error Detected. 0 = No HI_A interface error detected. 1 = The MCH has detected an error on the HI_A.	
16	0b R/WC	System Bus Error Detected.0 = No system bus interface error detected.1 = The MCH has detected an error on the System Bus.	
15:5	000h	Reserved	
4	0b R/WC	HI_D Error Detected. 0 = No HI_D interface error detected. 1 = The MCH has detected an error on HI_D.	
3	0b R/WC	HI_C Error Detected. 0 = No HI_C interface error detected. 1 = The MCH has detected an error on HI_C.	
2	0b R/WC	HI_B Error Detected. 0 = No HI_B interface error detected. 1 = The MCH has detected an error on HI_B.	
1:0	00b	Reserved	

3.6.14 HIA_FERR—HI_A First Error Register (D0:F1)

Address Offset:	50h
Default:	00h
Sticky:	Yes
Access:	R/WC
Size:	8 Bits

This register stores the FIRST error related to the HI_A interface. Any number of errors detected in a single clock cycle will be latched and no subsequent errors will be logged in this register. Any future errors (NEXT Errors) will be set HIA_NERR. No further error bits in this register will be set until the existing error bit is cleared.

Bits	Default, Access	Description
7	0b	Reserved
6	0b R/WC	 HI_A Target Abort. 0 = No Target Abort on MCH originated HI_A cycle detected. 1 = MCH detected that an MCH originated HI_A cycle was terminated with a Target Abort.
5	0b	Reserved
4	0b R/WC	 HI_A Data Parity Error Detected. 0 = No data parity error detected. 1 = MCH detected a parity error on a HI_A data transfer.
3:1	000b	Reserved
0	0b R/WC	 HI_A Address/Command Parity Error Detected. 0 = No address or command parity error detected. 1 = MCH detected a parity error on a HI_A address or command.

3.6.15 HIA_NERR—HI_A Next Error Register (D0:F1)

Address Offset:	52h
Default:	00h
Sticky:	Yes
Access:	R/WC
Size:	8 Bits

The FIRST HI_A error will be stored in HIA_FERR. This register stores all future HI_A errors. Multiple bits in this register may be set.

Note: Software must write a 1 to clear bits that are set.

Bits	Default, Access	Description
7	0b	Reserved
6	0b R/WC	 HI_A Target Abort. 0 = No Target Abort on MCH originated HI_A cycle terminated. 1 = MCH originated HI_A cycle was terminated with a Target Abort.
5	0b	Reserved
4	0b R/WC	 HI_A Data Parity Error Detected. 0 = No data parity error detected. 1 = Parity error on a HI_A data transfer.
3:1	000b	Reserved
0	0b R/WC	 HI_A Data Address/Command Parity Error Detected. 0 = No address or command parity error detected. 1 = Parity error on a HI_A address or command.

3.6.16 SCICMD_HIA—SCI Command Register (D0:F1)

Address Offset:	58h
Default:	00h
Sticky:	No
Access:	R/W
Size:	8 Bits

This register determines whether SCI will be generated when the associated flag is set in HIA_FERR or HIA_NERR. When an error flag is set in the HIA_FERR or HIA_NERR register, it can generate a SERR, SMI, or SCI when enabled in the SERRCMD, SMICMD, or SCICMD registers, respectively. Only one message type can be enabled.

Bits	Default, Access	Description
7	0b	Reserved
6	0b R/W	SCI on HI_A Target Abort Enable. 0 = No SCI generation 1 = Generate SCI if bit 6 is set in HIA_FERR or HIA_NERR
5	0b	Reserved
4	0b R/W	SCI on HI_A Data Parity Error Detected Enable. 0 = No SCI generation 1 = Generate SCI if bit 4 is set in HIA_FERR or HIA_NERR
3:1	000b	Reserved
0	0b R/W	SCI on HI_A Data Address/Command Error Detected Enable. 0 = No SCI generation 1 = Generate SCI if bit 0 is set in HIA_FERR or HIA_NERR

3.6.17 SMICMD_HIA—SMI Command Register (D0:F1)

Address Offset:	5Ah
Default:	00h
Sticky:	No
Access:	R/W
Size:	8 Bits

This register determines whether SMI will be generated when the associated flag is set in HIA_FERR or HIA_NERR. When an error flag is set in the HIA_FERR or HIA_NERR register, it can generate a SERR, SMI, or SCI when enabled in the SERRCMD, SMICMD, or SCICMD registers, respectively. Only one message type can be enabled.

Bits	Default, Access	Description
7	0b	Reserved
6	0b R/W	SMI on HI_A Target Abort Enable. 0 = No SMI generation 1 = Generate SMI if bit 6 is set in HIA_FERR or HIA_NERR
5	0b	Reserved
4	0b R/W	SMI on HI_A Data Parity Error Detected Enable. 0 = No SMI generation 1 = Generate SMI if bit 4 is set in HIA_FERR or HIA_NERR
3:1	000b	Reserved
0	0b R/W	SMI on HI_A Data Address/Command Error Detected Enable. 0 = No SMI generation 1 = Generate SMI if bit 0 is set in HIA_FERR or HIA_NERR

3.6.18 SERRCMD_HIA—SERR Command Register (D0:F1)

Address Offset:	5Ch
Default:	00h
Sticky:	No
Access:	R/W
Size:	8 Bits

This register determines whether SERR will be generated when the associated flag is set in HIA_FERR or HIA_NERR. When an error flag is set in the HIA_FERR or HIA_NERR register, it can generate a SERR, SMI, or SCI when enabled in the SERRCMD, SMICMD, or SCICMD registers, respectively. Only one message type can be enabled.

Bits	Default, Access	Description
7	0b	Reserved
6	0b R/W	SERR on HI_A Target Abort Enable. 0 = No SERR generation 1 = Generate SERR if bit 6 is set in HIA_FERR or HIA_NERR
5	0b	Reserved
4	0b R/W	SERR on HI_A Data Parity Error Detected Enable. 0 = No SERR generation 1 = Generate SERR if bit 4 is set in HIA_FERR or HIA_NERR
3:1	000b	Reserved
0	0b R/W	SEER on HI_A Data Address/Command Error Detected Enable. 0 = No SERR generation 1 = Generate SERR if bit 0 is set in HIA_FERR or HIA_NERR

3.6.19 SYSBUS_FERR—System Bus First Error Register (D0:F1)

Address Offset:	60h
Default:	00h
Sticky:	Yes
Access:	R/WC
Size:	8 Bits

This register stores the FIRST error related to the system bus interface. Any number of errors detected in a single clock cycle will be latched and no subsequent errors will be logged in this register. Any future errors (NEXT Errors) will be set in SYSBUS_NERR. No further error bits in this register will be set until the existing error bit is cleared.

Bits	Default, Access	Description
7	0b R/WC	System Bus BINIT# Detected. 0 = No system bus BINIT# detected. 1 = This bit is set on an electrical high-to-low transition (logical 0 to 1) of BINIT#.
6	0b R/WC	System Bus xERR# Detected. 0 = No system bus XERR# detected. 1 = This bit is set on an electrical high-to-low transition (logical 0 to 1) of either IERR# or MCERR# on the system bus.
5	0b R/WC	 Non-DRAM Lock Error (NDLOCK). 0 = No non-DRAM lock error detected. 1 = MCH detected a lock operation to memory mapped I/O space that did not map into DRAM.
4	0b R/WC	System Bus Address Above TOM (SBATOM). 0 = No system bus address above TOM detected. 1 = MCH detected an address above DRB[7], which is the Top of Memory and above 4 GB.
3	0b R/WC	System Bus Data Parity Error (SBDPAR).0 = No system bus data parity error detected.1 = MCH detected a data parity error on the system bus.
2	0b R/WC	System Bus Address Strobe Glitch Detected (SBAGL).0 = No system bus address strobe glitch detected.1 = MCH detected a glitch on one of the system bus address strobes.
1	0b R/WC	System Bus Data Strobe Glitch Detected (SBDGL).0 = No system bus data strobe glitch detected.1 = MCH detected a glitch on one of the system bus data strobes.
0	0b R/WC	 System Bus Request/Address Parity Error (SBRPAR). 0 = No system bus request/address parity error detected. 1 = MCH detected a parity error on either the address or request signals of the system bus.

3.6.20 SYSBUS_NERR— System Bus Next Error Register (D0:F1)

62h
00h
Yes
R/WC
8 Bits

The FIRST system bus error will be stored in SYSBUS_FERR. This register stores all future system bus errors. Multiple bits in this register may be set.

Note: Software must write a 1 to clear bits that are set.

Bits	Default, Access	Description
7	0b R/WC	System Bus BINIT# Detected. 0 = No system bus BINIT# detected. 1 = This bit is set on an electrical high-to-low transition (logical 0 to 1) of BINIT#.
6	0b R/WC	System Bus xERR# Detected. 0 = No system bus XERR# detected. 1 = This bit is set on an electrical high-to-low transition (logical 0 to 1) of either IERR# or MCERR# on the system bus.
5	0b R/WC	 Non-DRAM Lock Error (NDLOCK). 0 = No non-DRAM lock error detected. 1 = MCH detected a lock operation to memory space that did not map into DRAM.
4	0b R/WC	System Bus Address Above TOM (SBATOM). 0 = No system bus address above TOM detected. 1 = MCH detected an address above DRB[7], which is the Top of Memory and above 4 GB.
3	0b R/WC	System Bus Data Parity Error (SBDPAR).0 = No system bus data parity error detected.1 = MCH detected a data parity error on the system bus.
2	0b R/WC	System Bus Address Strobe Glitch Detected (SBAGL).0 = No system bus address strobe glitch detected.1 = MCH detected a glitch on one of the system bus address strobes.
1	0b R/WC	System Bus Data Strobe Glitch Detected (SBDGL).0 = No System Bus Data Strobe Glitch detected.1 = MCH detected a glitch on one of the system bus data strobes.
0	0b R/WC	System Bus Request/Address Parity Error (SBRPAR). 0 = No system bus request/address parity error detected. 1 = MCH detected a parity error on either the address or request signals of the system bus.

3.6.21 SCICMD_SYSBUS—SCI Command Register (D0:F1)

Address Offset:	68h
Default:	00h
Sticky:	No
Access:	R/W
Size:	8 Bits

This register determines whether SCI will be generated when the associated flag is set in SYSBUS_FERR or SYSBUS_NERR. When an error flag is set in the SYSBUS_FERR or SYSBUS_NERR register, it can generate a SERR, SMI, or SCI when enabled in the SERRCMD, SMICMD, or SCICMD registers, respectively. Only one message type can be enabled.

Bits	Default, Access	Description
	0b	SCI on System Bus BINIT# Detected Enable.
7	R/W	0 = No SCI generation 1 = Generate SCI if bit 7 is set in SYSBUS_FERR or SYSBUS_NERR
	0b	SCI on System Bus xERR# Detected Enable.
6	R/W	0 = No SCI generation 1 = Generate SCI if bit 6 is set in SYSBUS_FERR or SYSBUS_NERR
_	0b	SCI on Non-DRAM Lock Error Enable.
5	R/W	0 = No SCI generation 1 = Generate SCI if bit 5 is set in SYSBUS_FERR or SYSBUS_NERR
	0b	SCI on System Bus Address Above TOM Enable.
4	R/W	0 = No SCI generation 1 = Generate SCI if bit 4 is set in SYSBUS_FERR or SYSBUS_NERR
	0b	SCI on System Bus Data Parity Error Enable.
3	R/W	0 = No SCI generation 1 = Generate SCI if bit 3 is set in SYSBUS_FERR or SYSBUS_NERR
_	0b	SCI on System Bus Address Strobe Glitch Detected Enable.
2	R/W	0 = No SCI generation 1 = Generate SCI if bit 2 is set in SYSBUS_FERR or SYSBUS_NERR
	0b	SCI on System Bus Data Strobe Glitch Detected Enable.
1	R/W	0 = No SCI generation 1 = Generate SCI if bit 1 is set in SYSBUS_FERR or SYSBUS_NERR
	0b	SCI on System Bus Request/Address Parity Error Enable.
0	R/W	0 = No SCI generation 1 = Generate SCI if bit 0 is set in SYSBUS_FERR or SYSBUS_NERR

3.6.22 SMICMD_SYSBUS—SMI Command Register (D0:F1)

Address Offset:	6Ah
Default:	00h
Sticky:	No
Access:	R/W
Size:	8 Bits

This register determines whether SMI will be generated when the associated flag is set in SYSBUS_FERR or SYSBUS_NERR. When an error flag is set in the SYSBUS_FERR or SYSBUS_NERR register, it can generate a SERR, SMI, or SCI when enabled in the SERRCMD, SMICMD, or SCICMD registers, respectively. Only one message type can be enabled.

Bits	Default, Access	Description
7	0b R/W	SMI on System Bus BINIT# Detected Enable. 0 = No SMI generation 1 = Generate SMI if bit 7 is set in SYSBUS_FERR or SYSBUS_NERR
6	0b R/W	SMI on System Bus xERR# Detected Enable. 0 = No SMI generation 1 = Generate SMI if bit 6 is set in SYSBUS_FERR or SYSBUS_NERR
5	0b R/W	SMI on Non-DRAM Lock Error Enable. 0 = No SMI generation 1 = Generate SMI if bit 5 is set in SYSBUS_FERR or SYSBUS_NERR
4	0b R/W	SMI on System Bus Address Above TOM Enable. 0 = No SMI generation 1 = Generate SMI if bit 4 is set in SYSBUS_FERR or SYSBUS_NERR
3	0b R/W	SMI on System Bus Data Parity Error Enable. 0 = No SMI generation 1 = Generate SMI if bit 3 is set in SYSBUS_FERR or SYSBUS_NERR
2	0b R/W	SMI on System Bus Address Strobe Glitch Detected Enable. 0 = No SMI generation 1 = Generate SMI if bit 2 is set in SYSBUS_FERR or SYSBUS_NERR
1	0b R/W	SMI on System Bus Data Strobe Glitch Detected Enable. 0 = No SMI generation 1 = Generate SMI if bit 1 is set in SYSBUS_FERR or SYSBUS_NERR
0	0b R/W	SMI on System Bus Request/Address Parity Error Enable. 0 = No SMI generation 1 = Generate SMI if bit 0 is set in SYSBUS_FERR or SYSBUS_NERR

3.6.23 SERRCMD_SYSBUS—SERR Command Register (D0:F1)

Address Offset:	6Ch
Default:	00h
Sticky:	No
Access:	R/W
Size:	8 Bits
Access:	R/W

This register determines whether SERR will be generated when the associated flag is set in SYSBUS_FERR or SYSBUS_NERR. When an error flag is set in the SYSBUS_FERR or SYSBUS_NERR register, it can generate a SERR, SMI, or SCI when enabled in the SERRCMD, SMICMD, or SCICMD registers, respectively. Only one message type can be enabled.

Bits	Default, Access	Description
_	0b	SERR on System Bus BINIT# Detected Enable.
7	R/W	0 = No SERR generation 1 = Generate SERR if bit 7 is set in SYSBUS_FERR or SYSBUS_NERR
	0b	SERR on System Bus xERR# Detected Enable.
6	R/W	0 = No SERR generation 1 = Generate SERR if bit 6 is set in SYSBUS_FERR or SYSBUS_NERR
	0b	SERR on Non-DRAM Lock Error Enable.
5	R/W	0 = No SERR generation 1 = Generate SERR if bit 5 is set in SYSBUS_FERR or SYSBUS_NERR
	0b	SERR on System Bus Address Above TOM Enable.
4 R/W	R/W	0 = No SERR generation 1 = Generate SERR if bit 4 is set in SYSBUS_FERR or SYSBUS_NERR
	0b	SERR on System Bus Data Parity Error Enable.
3	R/W	0 = No SERR generation 1 = Generate SERR if bit 3 is set in SYSBUS_FERR or SYSBUS_NERR
	0b	SERR on System Bus Address Strobe Glitch Detected Enable.
2	R/W	0 = No SERR generation 1 = Generate SERR if bit 2 is set in SYSBUS_FERR or SYSBUS_NERR
	0b	SERR on System Bus Data Strobe Glitch Detected Enable.
1	R/W	0 = No SERR generation 1 = Generate SERR if bit 1 is set in SYSBUS_FERR or SYSBUS_NERR
	0b	SERR on System Bus Request/Address Parity Error Enable.
0	R/W	0 = No SERR generation 1 = Generate SERR if bit 0 is set in SYSBUS_FERR or SYSBUS_NERR

3.6.24 DRAM_FERR—DRAM First Error Register (D0:F1)

Address Offset:	80h
Default:	00h
Sticky:	Yes
Access:	R/WC
Size:	8 Bits

This register stores the FIRST ECC error on the DRAM interface. Any number of errors detected in a single clock cycle will be latched and no subsequent errors will be logged in this register. Any future errors (NEXT Errors) will be set in DRAM_NERR. No further error bits in this register will be set until the existing error bit is cleared.

Note: Software must write a 1 to clear bits that are set.

Bits	Default, Access	Description
7:2	00000b	Reserved
1	0b R/WC	Uncorrectable Memory Error Detected. 0 = No uncorrectable memory error detected. 1 = MCH detected an ECC error on the memory interface that is not correctable.
0	0b R/WC	Correctable Memory Error Detected. 0 = No correctable memory error detected. 1 = MCH detected and corrected an ECC error on the memory interface.

3.6.25 DRAM_NERR—DRAM Next Error Register (D0:F1)

Address Offset:	82h
Default:	00h
Sticky:	Yes
Access:	R/WC
Size:	8 Bits

The FIRST memory ECC error will be stored in DRAM_FERR. This register stores all future memory ECC errors. Multiple bits in this register may be set.

Note: Software must write a 1 to clear bits that are set.

Bits	Default, Access	Description
7:2	000000b	Reserved
1	0b R/WC	 Uncorrectable Memory Error Detected. 0 = No uncorrectable memory error detected. 1 = The MCH has detected an ECC error on the memory interface that is not correctable.
0	0b R/WC	 Correctable Memory Error Detected. 0 = No correctable memory error detected. 1 = The MCH has detected and corrected an ECC error on the memory interface.

3.6.26 SCICMD_DRAM—SCI Command Register (D0:F1)

Address Offset:	88h
Default:	00h
Sticky:	No
Access:	R/W
Size:	8 Bits

This register determines whether SCI will be generated when the associated flag is set in DRAM_FERR or DRAM_NERR. When an error flag is set in the DRAM_FERR or DRAM_NERR register, it can generate a SERR, SMI, or SCI when enabled in the SERRCMD, SMICMD, or SCICMD registers, respectively. Only one message type can be enabled.

Bits	Default, Access	Description
7:2	000000b	Reserved
1	0b R/W	 SCI on Multiple-Bit DRAM ECC Error (DMERR) Enable. 0 = Disable. 1 = Enable. The MCH generates an SCI when it detects a multiple-bit error reported by the DRAM controller.
0	0b R/W	 SCI on Single-Bit DRAM ECC Error (DSERR) Enable. 0 = Disable. 1 = Enable. The MCH generates an SCI when the DRAM controller detects a single-bit error.

3.6.27 SMICMD_DRAM—SMI Command Register (D0:F1)

Address Offset:	8Ah
Default:	00h
Sticky:	No
Access:	R/W
Size:	8 Bits

This register detemines whether SMI will be generated when the associated flag is set in DRAM_FERR or DRAM_NERR. When an error flag is set in the DRAM_FERR or DRAM_NERR register, it can generate a SERR, SMI, or SCI when enabled in the SERRCMD, SMICMD, or SCICMD registers, respectively. Only one message type can be enabled.

Bits	Default, Access	Description	
7:2	000000b	Reserved	
1	0b R/W	 SMI on Multiple-Bit DRAM ECC Error (DMERR) Enable. 0 = Disable. 1 = Enable. The MCH generates an SMI when it detects a multiple-bit error reported by the DRAM controller. 	
0	0b R/W	 SMI on Single-Bit DRAM ECC Error (DSERR) Enable. 0 = Disable. 1 = Enable. The MCH generates an SMI when the DRAM controller detects a single- bit error. 	

3.6.28 SERRCMD_DRAM—SERR Command Register (D0:F1)

Address Offset:	8Ch
Default:	00h
Sticky:	No
Access:	R/W
Size:	8 Bits

This register detemines whether SERR will be generated when the associated flag is set in DRAM_FERR or DRAM_NERR. When an error flag is set in the DRAM_FERR or DRAM_NERR register, it can generate a SERR, SMI, or SCI when enabled in the SERRCMD, SMICMD, or SCICMD registers, respectively. Only one message type can be enabled.

Bits	Default, Access	Description
7:2	00000b	Reserved
1	0b R/W	 SERR on Multiple-Bit DRAM ECC Error (DMERR) Enable. 0 = Disable. 1 = Enable. The MCH generates a SERR when it detects a multiple-bit error reported by the DRAM controller.
0	0b R/W	 SERR on Single-Bit DRAM ECC Error (DSERR) Enable. 0 = Disable. 1 = Enable. The MCH generates a SERR when the DRAM controller detects a single- bit error.

3.6.29 DRAM_CELOG_ADD—DRAM First Correctable Memory Error Address Register (D0:F1)

Address Offset:	A0–A3h
Default:	0000000h
Sticky:	Yes
Access:	RO
Size:	32 Bits

This register contains the physical address of the first correctable memory error. This register is locked when a flag in either DRAM_FERR or DRAM_NERR is set. If both registers' flags are set to 0, the DRAM_CELOG_ADD can be updated; however, if either register's flag is set to 1, then DRAM_CELOG_ADD will retain its value for logging purposes. This register is only valid if the flag in DRAM_FERR or DRAM_NERR is set.

Bits	Default, Access	Description
31:28	0h	Reserved
27:6	000000h RO	CE Address. This field contains address bits 33:12 of the first correctable memory error. The address bits represent a physical address (i.e., they are post translation).
5:0	00h	Reserved

3.6.30 DRAM_UELOG_ADD—DRAM First Uncorrectable Memory Error Address Register (D0:F1)

Address Offset:	B0–B3h
Default:	00000000h
Sticky:	Yes
Access:	RO
Size:	32 Bits

This register contains the physical address of the first uncorrectable memory error. When a flag in either DRAM_FERR or DRAM_NERR is set, DRAM_UELOG_ADD is locked. This register is only valid if a flag in DRAM_FERR or DRAM_NERR is set.

Bits	Default, Access	Description
31:28	0h	Reserved
27:6	000000h RO	UE Address. This field contains address bits 33:12 of the first uncorrectable memory error. The address bits represent a physical address (i.e., they are post translation).
5:0	00h	Reserved

3.6.31 DRAM_CELOG_SYNDROME—DRAM First Correctable Memory Error Syndrome Register (D0:F1)

Address Offset:	D0–D1h
Default:	0000h
Sticky:	Yes
Access:	RO
Size:	16 Bits

This register contains the ECC Syndrome of the first correctable memory error. This register is locked when a flag in either DRAM_FERR or DRAM_NERR is set. If the flags in both registers are set to 0, the DRAM_CELOG_SYNDROME can be updated; however, if either register's flags is set to 1, then DRAM_CELOG_SYNDROME will retain its value for logging purposes. This register is only valid if the flag in DRAM_FERR or DRAM_NERR is set.

Bits	Default, Access	Description
15:0	0000h RO	ECC Syndrome for Correctable Errors.

3.7 Hub Interface_B PCI-to-PCI Bridge Registers (Device 2, Function 0)

This section provides the register descriptions for the Hub Interface_B PCI-to-PCI bridge (Device 2, Function 0). Table 3-5 provides the register address map for this device, function.

Warning: Address locations that are not listed in the table are considered reserved register locations. Writes to "Reserved" registers may cause system failure. Reads from "Reserved" registers may return a non-zero value.

Offset	Mnemonic	Register Name	Default	Туре
00–01h	VID	Vendor Identification	8086h	RO
02–03h	DID	Device Identification	2543h	RO
04–05h	PCICMD	PCI Command	0000h	RO, R/W
06–07h	PCISTS	PCI Status	00A0h	RO, R/W
08h	RID	Revision Identification	See register description	RO
0Ah	SUBC	Sub Class Code	04h	RO
0Bh	BCC	Base Class Code	06h	RO
0Dh	MLT	Master Latency Timer	00h	R/W
0Eh	HDR	Header Type	01h	RO
18h	PBUSN	Primary Bus Number	00h	RO
19h	BUSN	Secondary Bus Number	00h	R/W
1Ah	SUBUSN	Subordinate Bus Number	00h	R/W
1Bh	SMLT	Secondary Bus Master Latency Timer	00h	Reserve
1Ch	IOBASE	I/O Base Address	F0h	R/W
1Dh	IOLIMIT	I/O Limit Address	00h	R/W
1E–1Fh	SEC_STS	Secondary Status	02A0h	RO, R/W
20–21h	MBASE	Memory Base Address	FFF0h	R/W
22–23h	MLIMIT	Memory Limit Address	0000h	R/W
24–25h	PMBASE	Prefetchable Memory Base Address	FFF0h	RO, R/V
26–27h	PMLIMIT	Prefetchable Memory Limit Address	0000h	RO, R/V
3Eh	BCTRL	Bridge Control	00h	RO, R/V

Table 3-5. Hub Interface_B PCI-to-PCI Bridge Register Map (HI_B—D2:F0)

3.7.1 VID—Vendor Identification Register (D2:F0)

Address Offset:00–01hDefault:8086hSticky:NoAccess:ROSize:16 Bits

The VID Register contains the vendor identification number. This 16-bit register combined with the Device Identification Register uniquely identifies any PCI device.

Bits	Default, Access	Description
15:0	8086h RO	Vendor Identification Device (VID). This register field contains the PCI standard identification for Intel, 8086h.

3.7.2 DID—Device Identification Register (D2:F0)

Address Offset:	02–03h
Default:	2543h
Sticky:	No
Access:	RO
Size:	16 Bits

This 16-bit register combined with the Vendor Identification register uniquely identifies any PCI device.

Bits	Default, Access	Description
15:0	2543h RO	Device Identification Number (DID). This is a 16-bit value assigned to the MCH Device 2.

3.7.3 PCICMD—PCI Command Register (D2:F0)

Address Offset:	04–05h
Default:	0000h
Sticky:	No
Access:	RO, R/W
Size:	16 Bits

Since MCH Device 0 does not physically reside on a physical PCI bus, portions of this register are not implemented.

Bits	Default, Access	Description
15:10	00h	Reserved
9	0b RO	Fast Back-to-Back Enable (FB2B). Not Applicable; Hardwired to 0.
		SERR Message Enable (SERRE). This bit is defined for compatibility with legacy designs. The BIOS should not use this bit and instead use Device 2, Function 1, offset 04h, bit 8.
8	0b R/W	This bit is a global enable bit for Device 2, Function 0 SERR messaging. The MCH does not have a SERR# signal. The MCH communicates the SERR# condition by sending a SERR message to the ICH. Errors are reported in SEC_STS register (Device 2, Function 0, Address 1Eh).
		 0 = Disable. 1 = Enable. MCH is enabled to send SERR messages over HI_A.
7	0b RO	Address/Data Stepping (ADSTEP). Not Applicable; Hardwired to 0.
6	0b RO	Parity Error Enable (PERRE). Hardwired to 0. Parity checking is not supported on the primary side of this device.
5	0b	Reserved
4	0b RO	Memory Write and Invalidate Enable (MWIE). Not Applicable; Hardwired to 0.
3	0b RO	Special Cycle Enable (SCE). Not Applicable; Hardwired to 0.
2	0b R/W	Bus Master Enable (BME). This bit is not functional. It is a R/W bit for compatibility with compliance testing software.
		Memory Access Enable (MAE).
1	0b R/W	 0 = Disable. All of Device 2's memory space is disabled. 1 = Enable. Enables the Memory and Prefetchable memory address ranges defined in the MBASE, MLIMIT, PMBASE, and PMLIMIT registers.
0	0b R/W	 IO Access Enable (IOAE). 0 = Disable. All of Device 2's I/O space is disabled. 1 = Enable. Enables the I/O address range defined in the IOBASE and IOLIMIT registers.

3.7.4 PCISTS—PCI Status Register (D2:F0)

06–07h
00A0h
No
RO, R/WC
16 Bits

PCISTS2 is a 16-bit status register that reports the occurrence of error conditions associated with the primary side of the "virtual" PCI-to-PCI bridge embedded within the MCH.

Bits	Default, Access	Description
15	0b RO	Detected Parity Error (DPE). Hardwired to 0. Parity is not supported on the primary side of this device.
14	0b R/WC	 Signaled System Error (SSE). This bit is defined for compatibility with legacy designs. The BIOS should not use this bit and instead use the FERR/NERR support in Device 2, Function 1, offset 06h, bit 14. Software clears this bit by writing a 1 to it. 0 = No SERR generated by MCH Device 2. 1 = MCH Device 2 generated a SERR message over HI_A for any enabled Device 2 error condition.
13	0b RO	Received Master Abort Status (RMAS). Hardwired to 0. The concept of master abort does not exist on the primary side of this device.
12	0b RO	Received Target Abort Status (RTAS). Hardwired to 0. The concept of target abort does not exist on the primary side of this device.
11	0b RO	Signaled Target Abort Status (STAS). Hardwired to 0. The concept of target abort does not exist on the primary side of this device.
10:9	00b RO	DEVSEL# Timing (DEVT). Hardwired to 00. The MCH does not support subtractive decoding of devices on bus 0. This bit field is therefore hardwired to 00 to indicate that Device 2 uses the fastest possible decode.
8	0b RO	Master Data Parity Error Detected (DPD). Hardwired to 0. Parity is not supported on the primary side of this device.
7	1b RO	Fast Back-to-Back (FB2B). Hardwired to 1. Indicates that fast back to back writes are always supported on this interface.
6	0b	Reserved
5	1b RO	66/64MHz capability (CAP66). Hardwired to 1. Since HI_B is capable of delivering data at a rate equal to that of any PCI66 device, this bit is hardwired to a 1 so that configuration software understands that downstream devices may also be effectively enabled for 66 MHz operation.
4:0	00h	Reserved

3.7.5 **RID**—Revision Identification Register (D2:F0)

Address Offset:	08h
Default:	See table below
Sticky:	No
Access:	RO
Size:	8 Bits

This register contains the revision number of the MCH Device 2.

Bits	Default, Access	Description
7:0	00h RO	Revision Identification Number (RID). This is an 8-bit value that indicates the revision identification number for the MCH Device 2. It will match the value in Device 0's RID field. 01h = A-1 Stepping.

3.7.6 SUBC—Sub-Class Code Register (D2:F0)

0Ah
04h
No
RO
8 Bits

This register contains the Sub-Class Code for the MCH Device 2.

Bits	Default, Access	Description
7:0	04h RO	Sub-Class Code (SUBC). This is an 8-bit value that indicates the category of Bridge into which Device 2 of the MCH falls. 04h = PCI-to-PCI bridge.

3.7.7 BCC—Base Class Code Register (D2:F0)

Address Offset:	0Bh
Default:	06h
Sticky:	No
Access:	RO
Size	8 Bits

This register contains the Base Class Code of the MCH Device 2.

Bits	Default, Access	Description
7:0	06h RO	Base Class Code (BASEC). This is an 8-bit value that indicates the Base Class Code for the MCH Device 2. 06h = Bridge device.

3.7.8 MLT—Master Latency Timer Register (D2:F0)

Address Offset:0DhDefault:00hSticky:NoAccess:R/WSize:8 Bits

This functionality is not applicable. It is described here since these bits should be implemented as read/write to ensure proper execution of standard PCI-to-PCI bridge configuration software.

Bits	Default, Access	Description
7:3	00h R/W	Scratchpad MLT (NA7:3). These bits return the value with which they are written; however, they have no internal function and are implemented as a scratchpad.
2:0	000b	Reserved

3.7.9 HDR—Header Type Register (D2:F0)

Address Offset:	0Eh
Default:	01h
Sticky:	No
Access:	RO
Size:	8 Bits

This register identifies the header layout of the configuration space.

Bits	Default, Access	Description
7:0	01h RO	 Header Type Register (HDR). When Function 1 is enabled, this read only field returns 81h to indicate that MCH Device 2 is a multi-function device with bridge header layout. When Function 1 is disabled, 01h is returned to indicate that MCH Device 2 is a single-function device with bridge layout. Writes to this location have no effect. This read only field indicates whether Device 2 is a multi-function device. 01h = Single Function Device (Function 1 is disabled in Device 0, offset E0h, bit 2) with bridge layout. 81h = Multi Function Device (Function 1 is enabled in Device 0, offset E0h, bit 2) with bridge layout.

3.7.10 PBUSN—Primary Bus Number Register (D2:F0)

Address Offset:	18h
Default:	00h
Sticky:	No
Access:	RO
Size:	8 Bits

This register identifies that a "virtual" PCI-to-PCI bridge is connected to Bus 0.

Bits	Default, Access	Description
7:0	00h RO	Primary Bus Number (BUSN). Configuration software typically programs this field with the number of the bus on the primary side of the bridge. Since Device 2 is an internal device and its primary bus is always 0, these bits are read only and are hardwired to 0.

3.7.11 SBUSN—Secondary Bus Number Register (D2:F0)

Address Offset:	19h
Default:	00h
Sticky:	No
Access:	R/W
Size:	8 Bits

This register identifies the bus number assigned to the second bus side of the "virtual" PCI-to-PCI bridge (the HI_B connection). This number is programmed by the PCI configuration software to allow mapping of configuration cycles to a second bridge device connected to HI_B.

Bits	Default, Access	Description
7:0	00h R/W	Secondary Bus Number (BUSN). This field is programmed by configuration software with the lowest bus number of the busses connected to HI_B. Since both Bus 0, Device 2 and the PCI-to-PCI bridge on the other end of the hub interface are considered by configuration software to be PCI bridges, this bus number will always correspond to the bus number assigned to HI_B.

3.7.12 SUBUSN—Subordinate Bus Number Register (D2:F0)

Address Offset:	1Ah
Default:	00h
Sticky:	No
Access:	R/W
Size:	8 Bits

This register identifies the highest subordinate bus (if any) that resides at the level below the secondary hub interface. This number is programmed by the PCI configuration software to allow mapping of configuration cycles to devices subordinate to the secondary hub interface.

Bits	Default, Access	Description
7:0	00h R/W	Subordinate Bus Number (BUSN). This register is programmed by configuration software with the number of the highest subordinate bus that lies behind the Device 2 bridge.

3.7.13 SMLT—Secondary Bus Master Latency Timer Register (D2:F0)

Address Offset:	1Bh
Default:	00h
Sticky:	No
Access:	Reserved
Size:	8 Bits

This register is not implemented.

Bits	Default, Access	Description
7:0	00h	Reserved

3.7.14 IOBASE—I/O Base Address Register (D2:F0)

Address Offset:	1Ch
Default:	F0h
Sticky:	No
Access:	R/W
Size:	8 Bits

This register controls the processor-to-HI_B I/O access routing based on the following formula:

 $IO_BASE \le address \le IO_LIMIT$

Only the upper four bits are programmable. For the purpose of address decode, address bits A[11:0] are treated as zeros. Thus, the bottom of the defined I/O address range will be aligned to a 4-KB boundary.

Bits	Default, Access	Description
7:4	Fh R/W	I/O Address Base (IOBASE). This field corresponds to A[15:12] of the I/O addresses passed by the Device 2 bridge to HI_B.
3:0	0h	Reserved

3.7.15 IOLIMIT—I/O Limit Address Register (D2:F0)

Address Offset:	1Dh
Default:	00h
Sticky:	No
Access:	R/W
Size:	8 Bits

This register controls the processor-to-HI_B I/O access routing based on the following formula:

 $IO_BASE \leq address \leq IO_LIMIT$

Only upper four bits are programmable. For the purpose of address decode, address bits A[11:0] are assumed to be FFFh. Thus, the top of the defined I/O address range will be at the top of a 4-KB aligned address block.

Bits	Default, Access	Description
7:4	0h R/W	I/O Address Limit (IOLIMIT). This field corresponds to A[15:12] of the I/O address limit of Device 2. Devices between this upper limit and IOBASE will be passed to HI_B.
3:0	0h	Reserved

3.7.16 SEC_STS—Secondary Status Register (D2:F0)

1E–1Fh
02A0h
No
RO, R/WC
16 Bits

SEC_STS is a 16-bit status register that reports the occurrence of error conditions associated with the secondary side (i.e., HI_B side) of the "virtual" PCI-to-PCI bridge embedded within the MCH.

Note: Software must write a 1 to clear bits that are set.

Bits	Default, Access	Description
15	0b R/WC	Detected Parity Error (DPE). This bit is defined for compatibility with legacy designs. The BIOS should clear this bit in addition to using the FERR/NERR support in Device 2, Function 1, offset 80h/82h, bits [3:0].
		 0 = No parity error detected. 1 = MCH detected a parity error in the address or data phase of HI_B bus transactions.
14	0b R/WC	Received System Error (RSE). This bit is defined for compatibility with legacy designs. The BIOS should clear this bit in addition to using the FERR/NERR support in Device 2, Function 1, offset 80h/82h, bit 6.
		 0 = No system error received. 1 = This bit is set to 1 when the MCH receives a SERR message on HI_B.
13	Ob	Received Master Abort Status (RMAS). This bit is defined for compatibility with legacy designs. The BIOS should clear this bit in addition to using the FERR/NERR support in Device 2, Function 1, offset 80h/82h, bit 5.
	R/WC	 0 = No Master Abort received. 1 = The MCH received a Master Abort completion packet on HI_B.
12	0b	Received Target Abort Status (RTAS). This bit is defined for compatibility with legacy designs. The BIOS should clear this bit in addition to using the FERR/NERR support in Device 2, Function 1, offset 80h/82h, bit 4.
	R/WC	 0 = No Target Abort received. 1 = The MCH received a Target Abort completion packet on HI_B.
11	0b RO	Signaled Target Abort Status (STAS). Hardwired to 0. The MCH does not generate target aborts on HI_B.
10:9	01b RO	DEVSEL# Timing (DEVT). Hardwired to 01. This concept is not supported on HI_B.
8	0b RO	Master Data Parity Error Detected (DPD). Hardwired to 0. The MCH does not implement PERR messaging on HI_B.
7	1b RO	Fast Back-to-Back (FB2B). Hardwired to 1. This function is not supported on HI_B.
6	0b	Reserved
5	1b RO	66/60 MHz capability (CAP66). Hardwired to 1. HI_B is enabled for 66 MHz operation.
4:0	00h	Reserved

3.7.17 MBASE—Memory Base Address Register (D2:F0)

Address Offset:	20–21h
Default:	FFF0h
Sticky:	No
Access:	R/W
Size:	16 Bits

This register controls the processor-to-HI_B non-prefetchable memory access routing based on the following formula:

$MEMORY_BASE \leq address \leq MEMORY_LIMIT$

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32-bit address. The bottom four bits of this register are read-only and return zeroes when read. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be 0. The bottom of the defined memory address range will be aligned to a 1-MB boundary.

Bits	Default, Access	Description
15:4	FFFh R/W	Memory Address Base (MBASE). These bits correspond to A[31:20] of the lower limit of the memory range that will be passed by the Device 2 bridge to HI_B.
3:0	0h	Reserved

3.7.18 MLIMIT—Memory Limit Address Register (D2:F0)

Address Offset:	22–23h
Default:	0000h
Sticky:	No
Access:	R/W
Size:	16 Bits

This register controls the processor-to-HI_B non-prefetchable memory access routing based on the following formula:

 $MEMORY_BASE \leq address \leq MEMORY_LIMIT$

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32-bit address. The bottom four bits of this register are read-only and return zeroes when read. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1-MB aligned memory block.

- *Note:* Memory range covered by MBASE and MLIMIT registers are used to map non-prefetchable HI_B address ranges (typically where control/status memory-mapped I/O data structures of the graphics controller will reside) and PMBASE and PMLIMIT are used to map prefetchable address ranges (typically graphics local memory). This segregation allows application of USWC space attribute to be performed in a true plug-and-play manner to the prefetchable address range for improved HI memory access performance.
- *Note:* Configuration software is responsible for programming all address range registers (prefetchable, non-prefetchable) with the values that provide exclusive address ranges (i.e., prevent overlap with each other and/or with the ranges covered with the main memory). There is no provision in the MCH hardware to enforce prevention of overlap, and operations of the system in the case of overlap are not guaranteed.

Bits	Default, Access	Description
15:4	000h R/W	Memory Address Limit (MLIMIT). This field corresponds to A[31:20] of the memory address that corresponds to the upper limit of the range of memory accesses that will be passed by the Device 2 bridge to HI_B.
3:0	0h	Reserved

3.7.19 PMBASE—Prefetchable Memory Base Address Register (D2:F0)

Address Offset:	24–25h
Default:	FFF0h
Sticky:	No
Access:	RO, R/W
Size:	16 Bits

This register controls the processor-to-HI_B prefetchable memory accesses. The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 36-bit address. For the purpose of address decode, bits A[19:0] are assumed to be zeros. Thus, the bottom of the defined memory address range will be aligned to a 1-MB boundary.

Bits	Default, Access	Description
15:4	FFFh R/W	Prefetchable Memory Address Base (PMBASE). This field corresponds to A[31:20] of the lower limit of the address range passed by bridge Device 2 across HI_B.
3:0	0h RO	64bit Addressing Support. Hardwired to zeros. The MCH supports Outbound 64-bit addressing.

3.7.20 PMLIMIT—Prefetchable Memory Limit Address Register (D2:F0)

26–27h
0000h
No
RO, R/W
16 Bits

This register controls the processor-to-HI_B prefetchable memory accesses. The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 36-bit address. For the purpose of address decode, bits A[19:0] are assumed to be FFFFh. Thus, the top of the defined memory address range will be at the top of a 1-MB aligned memory block.

Bits	Default, Access	Description
15:4	000h R/W	Prefetchable Memory Address Limit (PMLIMIT). This field corresponds to A[31:20] of the upper limit of the address range passed by bridge Device 2 across HI_B.
3:0	0h RO	64bit Addressing Support. Hardwired to 0s. The MCH supports Outbound 64-bit addressing.

3.7.21 BCTRL—Bridge Control Register (D2:F0)

R/W
s

This register provides extensions to the PCICMD register that are specific to PCI-to-PCI bridges. The BCTRL provides additional control for the secondary interface (i.e., HI_B) as well as some bits that affect the overall behavior of the "virtual" PCI-to-PCI bridge embedded within the MCH (e.g., VGA-compatible address range mapping).

Bits	Default, Access	Description	
7	0b RO	Fast Back-to-Back Enable (FB2BEN). Hardwired to 0. The MCH does not generate fast back-to-back cycles as a master on HI_B.	
6	0b RO	Secondary Bus Reset (SRESET). Hardwired to 0. The MCH does not support generation of reset via this bit on the HI_B.	
5	0b RO	Master Abort Mode (MAMODE). Hardwired to 0. Thus, when acting as a master on HI_B, the MCH will discard writes and return all ones during reads when a Master Abort occurs.	
4	0b	Reserved	
	0b	VGA Enable (VGAEN). This bit controls the routing of processor-initiated transactions targeting VGA compatible I/O and memory address ranges. The following must be enforced via software.	
3	R/W	 0 = This bit is set to 0 if the video device is not present behind the bridge. 1 = If video device is behind the bridge, this bit is set to 1. 	
		NOTE: Only one of Device 2–4's VGAEN bits is allowed to be set.	
2	0b R/W	 ISA Enable (ISAEN). This bit modifies the response by the MCH to an I/O access issued by the processor that targets ISA I/O addresses. This applies only to I/O addresses that are enabled by the IOBASE and IOLIMIT Registers. 0 = All addresses defined by the IOBASE and IOLIMIT Registers for processor I/O transactions are mapped to HI_B. 1 = MCH does not forward to HI_B any I/O transactions addressing the last 768 bytes in each 1-KB block, even if the addresses are within the range defined by the IOBASE and IOLIMIT Registers. Instead of going to HI_B, these cycles are forwarded to HI_A where they can be subtractively or positively claimed by the ISA bridge. 	
1	0b R/W	 SERR Enable (SERREN). This bit enables/disables forwarding of SERR messages from HI_B to HI_A, where they can be converted into interrupts that are eventually delivered to the processor. 0 = Disable 1 = Enable 	
0	0b R/W	 Parity Error Response Enable (PEREN). This bit controls the MCH's response to data phase parity errors on HI_B. 0 = Address and data parity errors on HI_B are not reported via the MCH HI_A SERR messaging mechanism. 1 = Address and data parity errors on HI_B are reported via the HI_A SERR messaging mechanism, if further enabled by SERREN. NOTE: Other types of error conditions can still be signaled via SERR messaging independent of this bit's state. 	

3.8 Hub Interface_B PCI-to-PCI Bridge Error Reporting Registers (Device 2, Function 1)

This section provides the register descriptions for the Hub Interface_B PCI-to-PCI bridge (Device 2, Function 1). Table 3-6 provides the register address map for this device, function.

Warning: Address locations that are not listed in the table are considered reserved register locations. Writes to "Reserved" registers may cause system failure. Reads to "Reserved" registers may return a non-zero value.

Table 3-6. Hub Interface_B PCI-to-PCI Bridge Error Reporting Register Map (HI_B—D2:F1)

Offset	Mnemonic	Register Name	Default	Туре
00–01h	VID	Vendor Identification	8086h	RO
02–03h	DID	Device Identification	2544h	RO
04–05h	PCICMD	PCI Command	0000h	RO, R/W
06–07h	PCISTS	PCI Status	0000h	R/WC
08h	RID	Revision Identification	See register description	RO
0Ah	SUBC	Sub-Class Code	00h	RO
0Bh	BCC	Base Class Code	FFh	RO
0Eh	HDR	Header Type	00h	RO
2C–2Dh SVID		Subsystem Vendor Identification	0000h	R/WO
2E–2Fh	SID	Subsystem Identification	0000h	R/WO
80h	HIB_FERR	HI_B First Error	00h	R/WC
82h	HIB_NERR	HI_B Next Error	00h	R/WC
A0h	SERRCMD	SERR Command	00h	R/W
A2h	SMICMD	SMI Command	00h	R/W
A4h SCICMD		SCI Command	00h	R/W

3.8.1 VID—Vendor Identification Register (D2:F1)

Address Offset:	00–01h
Default:	8086h
Sticky:	No
Access:	RO
Size:	16 Bits
SMB Shadowed:	Yes

The VID register contains the vendor identification number. This 16-bit register combined with the Device Identification register uniquely identifies any PCI device.

Bits	Default, Access	Description
15:0	8086h RO	Vendor Identification (VID). This register field contains the PCI standard identification for Intel.

3.8.2 DID—Device Identification Register (D2:F1)

Address Offset:	02–03h
Default:	2544h
Sticky:	No
Access:	RO
Size:	16 Bits
SMB Shadowed:	Yes

Bits	Default, Access	Description
15:0	2544h RO	Device Identification Number (DID). This is a 16-bit value assigned to the MCH Host-HI_B Bridge Function 1.

in

3.8.3 PCICMD—PCI Command Register (D2:F1)

Address Offset: 0	04–05h
Default: 0	000h
Sticky: N	10
Access: R	R/W
Size: 1	6 Bits
SMB Shadowed: Y	′es

Since MCH Device 2 does not physically reside on a physical PCI bus, portions of this register are not implemented.

Bits	Default, Access	Description
15:9	00h	Reserved
8	0b R/W	 SERR Enable (SERRE). This bit is a global enable bit for Device 2, Function 1 SERR messaging (HIB_FERR, HIB_NERR). The BIOS should use this bit for FERR/NERR support on new designs. This bit provides a superset of the functionality available in Device 2, Function 0, offset 0, bit 8. The MCH does not have a SERR signal. The MCH communicates the SERR condition by sending a SERR message over HI_A to the ICH3-S. 0 = Disable. SERR message is not generated by the MCH for Device 2, Function 1. 1 =Enable. MCH is enabled to generate SERR messages over HI_A for specific Device 2, Function 1 error conditions that are individually enabled in the SERRCMD register. The error status is reported in the HIB_FERR or HIB_NERR and PCISTS registers.
7:0	00h	Reserved

3.8.4 PCISTS—PCI Status Register (D2:F1)

Address Offset:	06–07h
Default:	0000h
Sticky:	No
Access:	R/WC
Size:	16 Bits
SMB Shadowed:	Yes

PCISTS is a 16-bit status register that reports the occurrence of error events on Device 2's PCI interface. Since MCH Device 2 does not physically reside on PCI_A, many of the bits are not implemented.

Bits	Default, Access	Description	
15	0b	Reserved	
14	0b R/WC	 Signaled System Error (SSE). BIOS is recommended to use this register instead of Device 2, Function 0 PCISTS register. Software sets SSE to 0 by writing a 1 to this bit. 0 = No signaled system error generated. 1 = MCH Device 2, Function 1 generates a SERR message over HI_A for any enabled HIB_FERR, HIB_NERR error conditions. Device 2 error conditions are enabled in the PCICMD and SERRCMD2 registers. Device 2 error flags are read/reset from the PCISTS, HIB NERR or HIB FERR registers. 	
13:0	000h	Reserved	

3.8.5 **RID**—Revision Identification Register (D2:F1)

Address Offset:	08h
Default:	See table below
Sticky:	No
Access:	RO
Size:	8 Bits
SMB Shadowed:	Yes

This register contains the revision number of the MCH Device 2.

Bits	Default, Access	Description
7:0	00h RO	Revision Identification Number (RID). This is an 8-bit value that indicates the revision identification number for the MCH Device 2. This number should always be the same as the RID for Function 0. 01h = A-1 Stepping.

3.8.6 SUBC—Sub-Class Code Register (D2:F1)

0Ah
00h
No
RO
8 Bits
Yes

This register contains the Sub-Class Code for the MCH Device 2.

Bits	Default, Access	Description
7:0	00h RO	Sub-Class Code (SUBC). This is an 8-bit value that indicates the category of undefined. 00h = Undefined device.

3.8.7 BCC—Base Class Code Register (D2:F1)

Address Offset:	0Bh
Default:	FFh
Sticky:	No
Access:	RO
Size:	8 Bits
SMB Shadowed:	Yes

This register contains the Base Class Code of the MCH Device 2.

Bits	Default, Access	Description
7:0	FFh RO	Base Class Code (BASEC). This is an 8-bit value that indicates the Base Class Code for the MCH Device 2. Since this function is used for error conditions, it does not fall into any other class. FFh = Non-defined device.

3.8.8 HDR—Header Type Register (D2:F1)

Address Offset:	0Eh
Default:	00h
Sticky:	No
Access:	RO
Size:	8 Bits
SMB Shadowed:	Yes

This register identifies the header layout of the configuration space. No physical register exists at this location.

Bits	Default, Access	Description
7:0	00h RO	PCI Header (HDR). Reads and writes to this location have no effect.

3.8.9 SVID—Subsystem Vendor Identification Register (D2:F1)

Address Offset:	2C–2Dh
Default:	0000h
Sticky:	No
Access:	R/WO
Size:	16 Bits
SMB Shadowed:	Yes

This value is used to identify the vendor of the subsystem.

Bits	Default, Access	Description
15:0	0000h R/WO	Subsystem Vendor ID (SUBVID). This field should be programmed during boot-up to indicate the vendor of the system board. After it has been written once, it becomes read only.

3.8.10 SID—Subsystem Identification Register (D2:F1)

Address Offset:	2E–2Fh
Default:	0000h
Sticky:	No
Access:	R/WO
Size:	16 Bits
SMB Shadowed:	Yes

This value is used to identify a particular subsystem.

Bits	Default, Access	Description
15:0	0000h R/WO	Subsystem ID (SUBID). This field should be programmed during BIOS initialization. After it has been written once, it becomes read only.

3.8.11 HIB_FERR—HI_B First Error Register (D2:F1)

Address Offset:	80h
Default:	00h
Sticky:	Yes
Access:	R/WC
Size:	8 Bits
SMB Shadowed:	Yes

This register stores the FIRST error related to the HI_B interface. Only one error bit will be set in this register. Any future errors (NEXT Errors) will be set in the HIB_NERR register. No further error bits in this register will be set until the existing error bit is cleared.

Note: Software must write a 1 to clear a bit that is set.

Bits	Default, Access	Description	
7	0b	Reserved	
6	0b R/WC	MCH Received SERR From HI_B. 0 = No SERR from HI_B detected. 1 = MCH detected a SERR on Hub Interface_B (e.g., Intel [®] P64H2).	
5	0b R/WC	 MCH Master Abort on HI_B (HIBMA). MCH did a master abort to a HI_B request. 0 = No Master Abort on HI_B detected. 1 = MCH detected an invalid address that will be master aborted. This bit is set even when the MCH does not respond with a Master Abort. 	
4	0b R/WC	 Received Target Abort on HI_B. 0 = No Target Abort on HI_B detected. 1 = MCH detected that an MCH originated cycle was terminated with a Target Abort completion packet. 	
3	0b R/WC	Correctable Error on Header/Address from HI_B. 0 = No correctable error on header/address from HI_B detected. 1 = Even when error correction is turned off, this bit may be set if a packet is received that has a single bit correctable error on a header/address line.	
2	0b R/WC	 Correctable Error on Data from HI_B. 0 = No correctable error on data from HI_B detected. 1 = Even when error correction is turned off, this bit may be set if a packet is received that has a single bit correctable error on a data line. 	
1	0b R/WC	 Uncorrectable Error on Header/Address from HI_B. 0 = No uncorrectable error on header/address from HI_B detected. 1 = Even when error correction is turned off, this bit may be set if a packet is received that has a multi-bit uncorrectable error on a header/address line. 	
0	0b R/WC	 Uncorrectable Error on Data Transfer from HI_B. 0 = No uncorrectable error on data from HI_B detected. 1 = Even when error correction is turned off, this bit may be set if a packet is received that has a multi-bit uncorrectable error data line. 	

3.8.12 HIB_NERR—HI_B Next Error Register (D2:F1)

Address Offset:	82h
Default:	00h
Sticky:	Yes
Access:	R/WC
Size:	8 Bits
SMB Shadowed:	Yes

The FIRST error related to HI_B will be stored in HIB_FERR. This register stores all future errors related to the HI_B interface. Multiple bits in this register may be set.

Note: Software must write a 1 to clear a bit that is set.

Bits	Default, Access	Description	
7	0b	Reserved	
6	0b R/WC	MCH Received SERR from HI_B. 0 = No SERR from HI_B received. 1 = MCH received a SERR from HI_B.	
5	0b R/WC	 MCH Master Abort on HI_B (HIBMA). MCH did a Master Abort to a HI_B Request. 0 = No Master Abort on HI_B detected. 1 = The MCH detected an invalid address that will be master aborted. This bit is set even when the MCH does not respond with the Master Abort completion packet. 	
4	0b R/WC	 Received Target Abort on HI_B. 0 = No Target Abort detected. 1 = The MCH has detected that an MCH originated cycle was terminated with a Target Abort completion packet. 	
3	0b R/WC	 Correctable Error on Header/Address from HI_B. 0 = No correctable error on header/address from HI_B detected. 1 = Even when error correction is turned off, this bit may be set if a packet is received that has a single bit correctable error on a header/address line. 	
2	2 0b R/WC 0 = No correctable Error on Data from HI_B. 0 = No correctable error on data from HI_B detected. 1 = Even when error correction is turned off, this bit may be set if a packet is received that has a single bit correctable error on a data line.		
1	Ob Uncorrectable Error on Header/Address from HI_B. 0b 0 = No uncorrectable error on header/address from HI_B detected. 1 = Even when error correction is turned off, this bit may be set if a packet is receive that has a multi-bit uncorrectable error on a header/address line.		
0	0b R/WC	 Uncorrectable Error on Data Transfer from HI_B. 0 = No uncorrectable error on data from HI_B detected. 1 = Even when error correction is turned off, this bit may be set if a packet is received that has a multi-bit uncorrectable error on a data line. 	

3.8.13 SERRCMD—SERR Command Register (D2:F1)

Address Offset:	A0h
Default:	00h
Sticky:	No
Access:	R/W
Size:	8 Bits

This register detemines whether a SERR will be generated when the associated flag is set in HIB_FERR or HIB_NERR. When an error flag is set in the HIB_FERR or HIB_NERR register, it can generate a SERR, SMI, or SCI when enabled in the SERRCMD, SMICMD, or SCICMD registers, respectively. Only one message type can be enabled.

Bits	Default, Access	Description
7:6	00b	Reserved
	0b	SERR on MCH Master Abort to a HI_B Request Enable.
5	R/W	0 = No SERR generation 1 = Generate SERR if bit 5 is set in HIB_FERR or HIB_NERR
	0b	SERR on Received Target Abort on HI_B Enable.
4 R/W		0 = No SERR generation 1 = Generate SERR if bit 4 is set in HIB_FERR or HIB_NERR
3 $0b = No SERR generation$		SERR on Correctable Error on Header/Address from HI_B Enable.
		0 = No SERR generation 1 = Generate SERR if bit 3 is set in HIB_FERR or HIB_NERR
	Ob SERR on Correctable Error on Data from HI_B Enable.	
2 R/W		0 = No SERR generation 1 = Generate SERR if bit 2 is set in HIB_FERR or HIB_NERR
	0b	SERR on Uncorrectable Error on Header/Address from HI_B Enable.
1	R/W	0 = No SERR generation 1 = Generate SERR if bit 1 is set in HIB_FERR or HIB_NERR
	0b	SERR on Uncorrectable Error on Data Transfer from HI_B Enable.
0	R/W	0 = No SERR generation 1 = Generate SERR if bit 0 is set in HIB_FERR or HIB_NERR

3.8.14 SMICMD—SMI Command Register (D2:F1)

Address Offset:	A2h
Default:	00h
Sticky:	No
Access:	R/W
Size:	8 Bits

This register detemines whether an SMI will be generated when the associated flag is set in HIB_FERR or HIB_NERR. When an error flag is set in the HIB_FERR or HIB_NERR register, it can generate a SERR, SMI, or SCI when enabled in the SERRCMD, SMICMD, or SCICMD registers, respectively. Only one message type can be enabled.

Bits	Default, Access	Description
7	0b	Reserved
	0b	SMI on MCH Received SERR from HI_B Enable.
6	R/W	0 = No SMI generation 1 = Generate SMI if bit 6 is set in HIB_FERR or HIB_NERR
	0b	SMI on MCH Master Abort to a HI_B Request Enable.
5	R/W	0 = No SMI generation 1 = Generate SMI if bit 5 is set in HIB_FERR or HIB_NERR
	0b	SMI on Received Target Abort on HI_B Enable.
4 R/W		0 = No SMI generation 1 = Generate SMI if bit 4 is set in HIB_FERR or HIB_NERR
	0b	SMI on Correctable Error on Header/Address from HI_B Enable.
3	R/W	0 = No SMI generation 1 = Generate SMI if bit 3 is set in HIB_FERR or HIB_NERR
Ob SMI on Correctable Error on Data from HI_B Enable.		SMI on Correctable Error on Data from HI_B Enable.
2	R/W	0 = No SMI generation 1 = Generate SMI if bit 2 is set in HIB_FERR or HIB_NERR
	0b	SMI on Uncorrectable Error on Header/Address from HI_B Enable.
1	R/W	0 = No SMI generation 1 = Generate SMI if bit 1 is set in HIB_FERR or HIB_NERR
	0b	SMI on Uncorrectable Error on Data Transfer from HI_B Enable.
0	R/W	0 = No SMI generation 1 = Generate SMI if bit 0 is set in HIB_FERR or HIB_NERR

intel

3.8.15 SCICMD—SCI Command Register (D2:F1)

Address Offset:	A4h
Default:	00h
Sticky:	Yes
Access:	R/W
Size:	8 Bits

This register detemines whether an SCI will be generated when the associated flag is set in HIB_FERR or HIB_NERR. When an error flag is set in the HIB_FERR or HIB_NERR register, it can generate a SERR, SMI, or SCI when enabled in the SERRCMD, SMICMD, or SCICMD registers, respectively. Only one message type can be enabled.

Bits	Default, Access	Description
7	0b	Reserved
_	0b	SCI on MCH Received SERR from HI_B Enable.
6	R/W	0 = No SCI generation 1 = Generate SCI if bit 6 is set in HIB_FERR or HIB_NERR
	0b	SCI on MCH Master Abort to a HI_B Request Enable.
5	R/W	0 = No SCI generation 1 = Generate SCI if bit 5 is set in HIB_FERR or HIB_NERR
	0b	SCI on Received Target Abort on HI_B Enable.
4	R/W	0 = No SCI generation 1 = Generate SCI if bit 4 is set in HIB_FERR or HIB_NERR
	0b	SCI on Correctable Error on Header/Address from HI_B Enable.
3	R/W	0 = No SCI generation 1 = Generate SCI if bit 3 is set in HIB_FERR or HIB_NERR
Ob SCI on Correctable Error on Da		SCI on Correctable Error on Data from HI_B Enable.
2	R/W	0 = No SCI generation 1 = Generate SCI if bit 2 is set in HIB_FERR or HIB_NERR
	0b	SCI on Uncorrectable Error on Header/Address from HI_B Enable.
1	R/W	0 = No SCI generation 1 = Generate SCI if bit 1 is set in HIB_FERR or HIB_NERR
	0b R/W	SCI on Uncorrectable Error on Data Transfer from HI_B Enable.
0		0 = No SCI generation 1 = Generate SCI if bit 0 is set in HIB_FERR or HIB_NERR

3.9 Hub Interface_C PCI-to-PCI Bridge Registers (Device 3, Function 0, 1)

Device 3 is the HI_C virtual PCI-to-PCI bridge. The register descriptions for Device 3 are the same as Device 2 (except for the DID Registers). This section contains the register maps for Device 3, Function 0,1. For register descriptions, refer to Section 3.7 and Section 3.8.

Warning: Address locations that are not listed in the following tables are considered reserved register locations. Writes to "Reserved" registers may cause system failure. Reads from "Reserved" registers may return a non-zero value.

Table 3-7. Hub Interface_C PCI-to-PCI Bridge Register Map (HI_C—D3:F0)

Offset	Mnemonic	Register Name	Default	Туре
00–01h	VID	Vendor Identification	8086h	RO
02–03h	DID	Device Identification	2545h	RO
04–05h	PCICMD	PCI Command	0000h	RO, R/W
06–07h	PCISTS	PCI Status	00A0h	RO, R/WC
08h	RID	Revision Identification	01h	RO
0Ah	SUBC	Sub-Class Code	04h	RO
0Bh	BCC	Base Class Code	06h	RO
0Dh	MLT	Master Latency Timer	00h	R/W
0Eh	HDR	Header Type	01h	RO
18h	PBUSN	Primary Bus Number	00h	RO
19h	BUSN	Secondary Bus Number	00h	R/W
1Ah	SUBUSN	Subordinate Bus Number	00h	R/W
1Bh	SMLT	Secondary Bus Master Latency Timer	00h	Reserved
1Ch	IOBASE	I/O Base Address	F0h	R/W
1Dh	IOLIMIT	I/O Limit Address	00h	R/W
1E–1Fh	SEC_STS	Secondary Status	02A0	RO, R/WC
20–21h	MBASE	Memory Base Address	FFF0h	R/W
22–23h	MLIMIT	Memory Limit Address	0000h	R/W
24–25h	PMBASE	Prefetchable Memory Base Address	FFF0h	RO, R/W
26–27h	PMLIMIT	Prefetchable Memory Limit Address	0000h	RO, R/W
3Eh	BCTRL	Bridge Control	00h	RO, R/W

Offset	Mnemonic	Register Name	Default	Туре
00–01h	VID	Vendor Identification	8086h	RO
02–03h	DID	Device Identification	2546h	RO
04–05h	PCICMD	PCI Command	0000h	RO, R/W
06–07h	PCISTS	PCI Status	0000h	R/WC
08h	RID	Revision Identification	01	RO
0Ah	SUBC	Sub-Class Code	00h	RO
0Bh	BCC	Base Class Code	FFh	RO
0Eh	HDR	Header Type	00h	RO
2C–2Dh	SVID	Subsystem Vendor Identification	0000h	R/WO
2E–2Fh	SID	Subsystem Identification	0000h	R/WO
80h	HIC_FERR	HI_C First Error	00h	R/WC
82h	HIC_NERR	HI_C Next Error	00h	R/WC
A0h	SERRCMD	SERR Command	00h	R/W
A2h	SMICMD	SMI Command	00h	R/W
A4h	SCICMD	SCI Command	00h	R/W

Table 3-8. Hub Interface_C PCI-to-PCI Bridge Error Reporting Register Map (HI_C—D3:F1)

3.10 Hub Interface_D PCI-to-PCI Bridge Registers (Device 4, Function 0, 1)

Device 4 is the HI_D virtual PCI-to-PCI bridge. The register descriptions for Device 4 are the same as Device 2 (except for the DID Registers). This section contains register address maps for Device 4, Function 0,1. For register descriptions, refer to Section 3.7 and Section 3.8.

Warning: Address locations that are not listed in the following tables are considered reserved register locations. Writes to "Reserved" registers may cause system failure. Reads from "Reserved" registers may return a non-zero value.

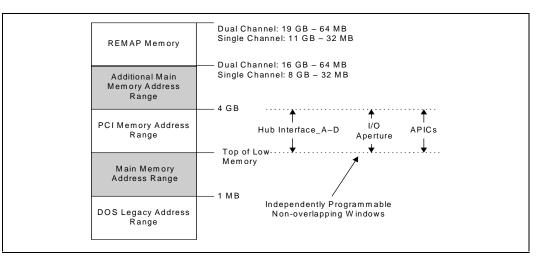
Table 3-9. Hub Interface_D PCI-to-PCI Bridge Register Map (HI_D—D4:F0)

Offset	Mnemonic	Register Name	Default	Туре
00–01h	VID	Vendor Identification	8086h	RO
02–03h	DID	Device Identification	2547h	RO
04–05h	PCICMD	PCI Command	0000h	RO, R/W
06–07h	PCISTS	PCI Status	00A0h	RO, R/WC
08h	RID	Revision Identification	01h	RO
0Ah	SUBC	Sub-Class Code	04h	RO
0Bh	BCC	Base Class Code	06h	RO
0Dh	MLT	Master Latency Timer	00h	R/W
0Eh	HDR	Header Type	01h	RO
18h	PBUSN	Primary Bus Number	00h	RO
19h	BUSN	Secondary Bus Number	00h	R/W
1Ah	SUBUSN	Subordinate Bus Number	00h	R/W
1Bh	SMLT	Secondary Bus Master Latency Timer	00h	Reserved
1Ch	IOBASE	I/O Base Address	F0h	R/W
1Dh	IOLIMIT	I/O Limit Address	00h	R/W
1E–1Fh	SEC_STS	Secondary Status	02A0	RO, R/WC
20–21h	MBASE	Memory Base Address	FFF0h	R/W
22–23h	MLIMIT	Memory Limit Address	0000h	R/W
24–25h	PMBASE	Prefetchable Memory Base Address	FFF0h	RO, R/W
26–27h	PMLIMIT	Prefetchable Memory Limit Address	0000h	RO, R/W
3Eh	BCTRL	Bridge Control	00h	RO, R/W

Offset	Mnemonic	Register Name	Default	Туре
00–01h	VID	Vendor Identification	8086h	RO
02–03h	DID	Device Identification	2548h	RO
04–05h	PCICMD	PCI Command	0000h	RO, R/W
06–07h	PCISTS	PCI Status	0000h	R/WC
08h	RID	Revision Identification	01h	RO
0Ah	SUBC	Sub-Class Code	00h	RO
0Bh	BCC	Base Class Code	FFh	RO
0Eh	HDR	Header Type	00h	RO
2C–2Dh	SVID	Subsystem Vendor Identification	0000h	R/WO
2E–2Fh	SID	Subsystem Identification	0000h	R/WO
80h	HID_FERR	HI_D First Error	00h	R/WC
82h	HID_NERR	HI_D Next Error	00h	R/WC
A0h	SERRCMD	SERR Command	00h	R/W
A2h	SMICMD	SMI Command	00h	R/W
A4h	SCICMD	SCI Command	00h	R/W

Table 3-10. Hub Interface_D PCI-to-PCI Bridge Error Reporting Register Map (HI_D—D4:F1)

System Address Map

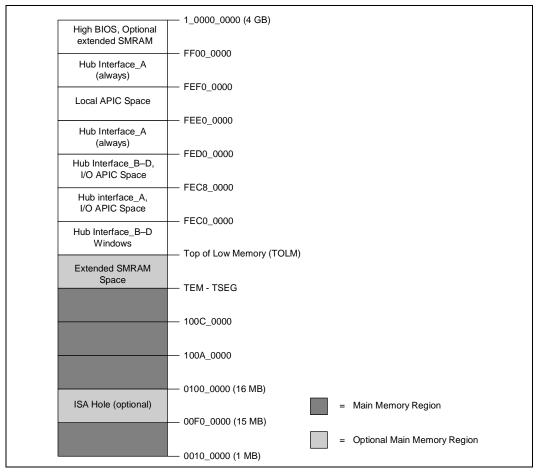

int_{el} System Address Map

A system based on the E7501 chipset in dual-channel mode supports 16 GB - 64 MB of hostaddressable memory space. In single-channel mode, it supports 8 GB – 32 MB of host-addressable memory space. It also supports 64 KB + 3 bytes of host-addressable I/O space. The I/O and memory spaces are divided by system configuration software into regions. The memory ranges are useful either as system memory or as specialized memory, while the I/O regions are used solely to control the operation of devices in the system.

4.1 System Memory Spaces

There are four basic regions of memory in the system:

- High Memory Range. Memory above 4 GB. This memory range is for additional system memory (1_0000_0000h to 3_FFFF_FFFFh in dual-channel mode, (1_0000_0000h to 1_FFFF_FFFFh in single-channel mode).
- Memory between the TOLM Register and 4 GB. This range is used for mapping APIC and Hub Interface_A–D. Programmable non-overlapping I/O windows can be mapped to this area.
- Memory between 1 MB and the Top of Low Memory (TOLM) Register. This is a system memory address range (0_0100_0000h to TOLM).
- DOS Compatible memory area. Memory below 1 MB (0_0000_0000h to 0_0009_FFFFh).
- The system memory address segments refer to DDR SDRAM memory. System memory addresses Note: are mapped to DDR SDRAM channels, devices, banks, rows, and columns in different ways depending upon the type of memory being used and on the density or organization of the memory. See Section 5.5 for more information on DDR SDRAM memory.


Figure 4-1. System Address Map

109

These address ranges are always mapped to system memory, regardless of the system configuration. Memory may be allocated from the system memory segment for use by System Management Mode (SMM) hardware and software. The top of system memory is defined by the Top of Low Memory (TOLM) register. Note that the address of the highest 64 MB (32 MB in single-channel mode) quantity of valid memory in the system is placed into the DRB7 register. For systems with a total system memory space and PCI memory-mapped space of less than 4 GB, this value will be the same as the one programmed into the TOLM register. For other memory configurations, the two are unlikely to be the same, since the PCI configuration portion of the BIOS software will program the TOLM register to the maximum value that is less than 4 GB and also allows enough room for all populated PCI devices. Figure 4-2 shows the segments within the extended memory segment (1 MB to 4 GB).

4.1.1 VGA and MDA Memory Spaces

Video cards use these legacy address ranges to map a frame buffer or a character-based video buffer. The address ranges in this memory space are:

- VGAA 0_000A_0000h to 0_000A_FFFFh
- MDA 0_000B_0000h to 0_000B_7FFFh
- VGAB 0_000B_8000h to 0_000B_FFFFh

By default, accesses to these ranges are forwarded to HI_A. However, if the VGA_EN bit is set in the BCTRL configuration registers of Devices 2-4, then transactions within the VGA and MDA spaces are sent to HI_B, HI_C, HI_D, respectively.

Note: The VGA_EN bit may be set in one and only one of the BCTRL registers. Software must not set more than one of the VGA_EN bits.

If the configuration bit MCHCFG.MDAP is set, then accesses that fall within the MDA range are sent to HI_A without regard for the VGA_EN bits. Legacy support requires the ability to have a second graphics controller (monochrome) in the system. Accesses in the standard VGA range are forwarded to HI_B, HI_C, HI_D (depending on configuration bits). Since the monochrome adapter may be on the HI_A/PCI (or ISA) bus, the MCH must decode cycles in the MDA range and forward them to HI_A. This capability is controlled by a configuration bit (MDAP bit). In addition to the memory range B0000h to B7FFFh, the MCH decodes IO cycles at 3B4h, 3B5h, 3B8h, 3B9h, 3BAh and 3BFh and forwards them to HI_A.

An optimization allows the system to reclaim the memory displaced by these regions. When SMM memory space is enabled by SMRAM.G_SMRAME and either the SMRAM.D_OPEN bit is set or the system bus receives an SMM-encoded request for code (not data), the transaction is steered to system memory rather than HI_A. Under these conditions, both of the VGA_EN bits and the MDAP bit are ignored.

4.1.2 PAM Memory Spaces

The address ranges in this space are:

- PAMC0 0_000C_0000h to 0_000C_3FFFh
- PAMC4 0_000C_4000h to 0_000C_7FFFh
- PAMC8 0 000C 8000h to 0 000C BFFFh
- PAMCC 0_000C_C000h to 0_000C_FFFFh
- PAMD0 0_000D_0000h to 0_000D_3FFFh
- PAMD4 0_000D_4000h to 0_000D_7FFFh
- PAMD8 0_000D_8000h to 0_000D_BFFFh
- PAMDC 0 000D C000h to 0 000D FFFFh
- PAME0 0 000E 0000h to 0 000E 3FFFh
- PAME4 0 000E 4000h to 0 000E 7FFFh
- PAME8 0 000E 8000h to 0 000E BFFFh
- PAMEC 0 000E C000h to 0 000E FFFFh
- PAMF0 0_000F_0000h to 0_000F_FFFFh

The 256-KB PAM region is divided into three parts:

- ISA expansion region: a 128-KB area between 0_000C_0000h to 0_000D_FFFFh
- Extended BIOS region: a 64-KB area between 0_000E_0000h to 0_000E_FFFFh
- System BIOS region: a 64-KB area between 0_000F_0000h to 0_000F_FFFFh.

The ISA expansion region is divided into eight, 16-KB segments. Each segment can be assigned one of four read/write states: read-only, write-only, read/write, or disabled. Typically, these blocks are mapped through the MCH and are subtractively decoded to ISA space.

The extended System BIOS region is divided into four, 16-KB segments. Each segment can be assigned independent read and write attributes so it can be mapped either to system memory or to HI_A. Typically, this area is used for RAM or ROM.

The system BIOS region is a single, 64-KB segment. This segment can be assigned read and write attributes. It is by default (after reset) read/write disabled and cycles are forwarded to HI_A. By manipulating the read/write attributes, the MCH can shadow BIOS into system memory.

Note that the PAM region can be accessed by HI_A, HI_B, HI_C, and HI_D. All reads or writes from any HI that hit the PAM area are sent to system memory. If the system is setup so that there are HI accesses to the PAM regions, then the PAM region being accessed must be programmed to be both readable and writable by the processor. If the accessed PAM region is programmed for either reads or writes to be forwarded to HI_A, and there are HI accesses to that PAM, the system may fault.

4.1.3 ISA Hole Memory Space

BIOS software may optionally open a "window" between 15 MB and 16 MB (0_00F0_0000 to 0_00FF_FFFF) that relays transactions to HI_A instead of completing them with a system memory access. This window is opened with the FDHC.HEN configuration field.

4.1.4 TSEG SMM Memory Space

The TSEG SMM space (TOLM – TSEG to TOLM) allows system management software to partition a region of system memory just below the top of low memory (TOLM) that is accessible only by system management software. This region may be 128 KB, 256 KB, 512 KB, or 1 MB in size, depending upon the ESMRAMC.TSEG_SZ field. This space must be below 4 GB, so is below TOLM and not the top of physical memory. SMM memory is globally enabled by SMRAM.G_SMRAME. Requests may access SMM system memory when either SMM space is open (SMRAM.D_OPEN) or the MCH receives an SMM code request on its system bus. To access the TSEG SMM space, the TSEG must be enabled by ESMRAMC.T_EN. When all of these conditions are met, a system bus access to the TSEG space (between TOLM–TSEG and TOLM) is sent to system memory. When the high SMRAM is not enabled or if the TSEG is not enabled, memory requests from all interfaces are forwarded to system memory. When the transaction is specially terminated.

Hub interface originated accesses are not allowed to SMM space.

4.1.5 I/O APIC Memory Space

The I/O APIC spaces are used to communicate with I/O APIC interrupt controllers that may be populated on HI_A through HI_D. Since it is difficult to relocate an interrupt controller using plugand-play software, fixed address decode regions have been allocated for them. The address ranges are:

- I/OAPIC0 (HI_A) 0_FEC0_0000h to 0_FEC7_FFFh
- I/OAPIC1 (HI_B) 0_FEC8_0000h to 0_FEC8_0FFFh
- I/OAPIC2 (HI_C) 0_FEC8_1000h to 0_FEC8_1FFFh
- I/OAPIC3 (HI_D) 0_FEC8_2000h to 0_FEC8_2FFFh

Processor accesses to the IOAPIC0 region are always sent to HI_A. Processor accesses to the IOAPIC1 region are always sent to HI_B and so on.

4.1.6 System Bus Interrupt Memory Space

The system bus interrupt space (0_FEE0_0000h to 0_FEEF_FFFFh) is the address used to deliver interrupts to the system bus. Any device on HI_A, HI_B, HI_C, or HI_D may issue a double-word memory write to 0FEEx_xxxh. The MCH will forward this memory write along with the data to the system bus as an Interrupt Message Transaction. The MCH terminates the system bus transaction by providing the response and asserting TRDY#. This memory write cycle does not go to system memory.

The processors may also use this region to send inter-processor interrupts (IPI) from one processor to another.

4.1.7 High SMM Memory Space

The HIGHSMM space (0_FEDA_0000h to 0_FEDB_FFFFh) allows cacheable access to the compatible SMM space by remapping valid SMM accesses between 0_FEDA_0000h and 0_FEDB_FFFFh to accesses between 0_000A_0000h and 0_000B_FFFFh. The accesses are remapped when SMRAM space is enabled; an appropriate access is detected on the system bus, and when ESMRAMC.H_SMRAME allows access to high SMRAM space. SMM memory accesses from any HI port are specially terminated: reads are provided with the value from address 0 while writes are ignored entirely.

4.1.8 Device 2 Memory and Prefetchable Memory

Plug-and-play software configures the HI_B memory window to provide enough memory space for the devices behind this PCI-to-PCI bridge. Accesses that have addresses that fall within this window are decoded and forwarded to HI_B for completion. The address ranges are:

- M2 MBASE2 to MLIMIT2
- PM2 PMBASE2 to PMLIMIT2

Note that these registers must be programmed with values that place the HI_B memory space window between the value in the TOLM register and 4 GB. In addition, neither region should overlap with any other fixed or relocatable area of memory.

4.1.9 Device 3 Memory and Prefetchable Memory

Plug-and-play software configures the HI_C memory window to provide enough memory space for the devices behind this PCI-to-PCI bridge. Accesses that have addresses that fall within this window are decoded and forwarded to HI_C for completion. The address ranges are:

- M3 MBASE3 to MLIMIT3
- PM3 PMBASE3 to PMLIMIT3

Note that these registers must be programmed with values that place the HI_C memory space window between the value in the TOLM register and 4 GB. In addition, neither region should overlap with any other fixed or relocatable area of memory.

4.1.10 Device 4 Memory and Prefetchable Memory

Plug-and-play software configures the HI_D memory window to provide enough memory space for the devices behind this PCI-to-PCI bridge. Accesses that have addresses that fall within this window are decoded and forwarded to HI_D for completion. The address ranges are:

- M4 MBASE4 to MLIMIT4
- PM4 PMBASE4 to PMLIMIT4

Note that these registers must be programmed with values that place the HI_D memory space window between the value in the TOLM register and 4 GB. In addition, neither region should overlap with any other fixed or relocatable area of memory.

4.1.11 HI_A Subtractive Decode

All accesses that fall between the value programmed into the TOLM register and 4 GB are subtractively decoded and forwarded to HI_A if they do not decode to a space that corresponds to another device.

4.2 I/O Address Space

The MCH does not support the existence of any other I/O devices on the system bus. The MCH generates HI_A, HI_B, HI_C, or HI_D bus cycles for all processor I/O accesses. The MCH contains two internal registers in the processor I/O space, the Configuration Address Register (CONFIG_ADDRESS) and the Configuration Data Register (CONFIG_DATA). These locations are used to implement the configuration space access mechanism and are described in the Device Configuration Registers section.

The processor allows 64K+3 bytes to be addressed within the I/O space. The MCH propagates the processor I/O address without any translation to the targeted destination bus. Note that the upper three locations can be accessed only during I/O address wrap-around when signal A16# is asserted on the system bus. A16# is asserted on the system bus when a DWord I/O access is made from address 0FFFDh, 0FFFEh, or 0FFFFh. In addition, A16# is asserted when software attempts a two byte I/O access from address 0FFFFh.

The I/O accesses (other than ones used for configuration space access) are forwarded normally to HI_A, HI_B, HI_C, and HI_D. All I/O cycles receive a Defer Response. The MCH never posts an I/O write.

The MCH never responds to I/O or configuration cycles initiated on any of the hub interfaces. Hub interface transactions requiring completion are terminated with "master abort" completion packets on the hub interfaces. Hub interface I/O write transactions not requiring completion are dropped.

4.3 SMM Space

4.3.1 System Management Mode (SMM) Memory Range

The E7501 chipset supports the use of system memory as System Management Mode RAM (SMM RAM), which enables the use of System Management Mode. The MCH supports three SMM options:

- Compatible SMRAM (C_SMRAM)
- High Segment (HSEG)
- Top of Memory Segment (TSEG).

System Management RAM space provides a memory area that is available for the SMI handlers and code and data storage. This memory resource is normally hidden from the operating system so the processor has immediate access to this memory space upon entry to SMM. The MCH provides three SMRAM options:

- Below 1 MB option that supports compatible SMI handlers.
- Above 1 MB option that allows new SMI handlers to execute with write-back cacheable SMRAM.
- Optional larger write-through cacheable TSEG area from 128 KB to 1 MB in size above 1 MB that is reserved below the 4 GB in system memory space. The above 1-MB solutions require changes to compatible SMRAM handler code to properly execute above 1 MB.

4.3.2 SMM Space Restrictions

When any of the following conditions are violated, the results of SMM accesses are unpredictable and may cause the system to hang:

- The Compatible SMM space must not be set-up as cacheable.
- Both D_OPEN and D_CLOSE must not be set to 1 at the same time.
- When TSEG SMM space is enabled, the TSEG space must not be reported to the operating system as available system memory. This is a BIOS responsibility.

4.3.3 SMM Space Definition

SMM space is defined by its addressed SMM space and its system memory SMM space. The addressed SMM space is defined as the range of bus addresses used by the processor to access SMM space. System memory SMM space is defined as the range of physical system memory locations containing the SMM code. SMM space can be accessed at one of three transaction address ranges: Compatible, High, and TSEG. The Compatible and TSEG SMM spaces are not remapped; therefore, the addressed and system memory SMM space are the same address range. Since the High SMM space is remapped, the addressed and system memory SMM space are different address ranges. Note that the High system memory space is the same as the Compatible Transaction Address space. Table 4-1 describes three unique address ranges:

- Compatible Transaction Address
- High Transaction Address
- TSEG Transaction Address

Table 4-1. SMM Address Range

SMM Space Enabled	Transaction Address Space (Adr)	System Memory Space (DRAM)
Compatible	A0000h to BFFFFh	A0000h to BFFFFh
High ¹	0FEDA0000h to 0FEDBFFFFh	A0000h to BFFFFh
TSEG ²	(TOLM-TSEG_SZ) to TOLM	(TOLM-TSEG_SZ) to TOLM

NOTES:

- High SMM: This is different than in previous chipsets. In previous chipsets the High segment was the 384-KB region from A_0000h to F_FFFFh. However, C_0000h to F_FFFFh was not practically useful so it is deleted in the E7501 chipset MCH.
- 2. TSEG SMM: In the E7501 chipset MCH the TSEG region is not offset by 256 MB and it is not remapped.

4.4 Memory Re-Claim Background

The following memory-mapped I/O devices are typically located below 4 GB:

- High BIOS
- H-Seg
- XAPIC
- Local APIC
- System Bus Interrupts
- HI_B, HI_C, HI_D BARs

In server systems the memory allocated to memory mapped I/O devices could easily exceed 1 GB. The result is that a large amount of physical memory would not be usable.

The MCH provides the capability to re-claim the physical memory overlapped by the memory mapped I/O logical address space. The MCH re-maps physical memory from the Top of Low Memory (TOLM) boundary up to the 4-GB boundary (or DRB7 if less than 4 GB) to an equivalent sized logical address range located just above the top of physical memory.

4.4.1 Memory Re-Mapping

An incoming address (referred to as a logical address) is checked to see if it falls in the memory remap window. The bottom of the re-map window is defined by the value in the REMAPBASE register. The top of the re-map window is defined by the value in the REMAPLIMIT register. An address that falls within this window is remapped to the physical memory starting at the address defined by the TOLM register.

Functional Description

5.1.2

5.1.1

Out of Order Queue (OOQ) Depth

In Order Queue (IOQ) Depth

transactions by asserting BNR#.

The MCH supports two outstanding Deferred transactions on the system bus. The two transactions must target different I/O interfaces as only one deferred transaction can be outstanding to any single I/O interface at a time.

Intel[®] E7501 Chipset MCH Datasheet

Functional Description

This chapter covers the MCH functional units including: system bus, system memory, SMBus, power management, MCH clocking, MCH system reset and power sequencing.

5.1 **Processor System Bus (PSB)**

The MCH supports the Intel[®] Xeon[™] processor with 512 KByte L2 cache, the Intel Xeon processor with 533 MHz system bus, and the Intel[®] Pentium[®] M processor with one Mbyte of L2 cache. The MCH supports PSB frequencies of 400 MHz and 533 MHz, and uses a scaleable PSB VTT and on-die termination. It supports 36-bit host addressing, decoding up to 64 GB of the processor's memory address space. Host-initiated I/O cycles are positively decoded to HI B, HI C, HI D, or MCH configuration space and subtractively decoded to HI A. Host-initiated memory cycles are positively decoded to HI_B, HI_C, HI_D, or system memory and are subtractively decoded to HI_A if under 16 GB – 64 MB, unless memory reclaim is enabled.

The MCH supports the Intel Xeon processor and Intel Pentium M processor subset of the Enhanced Mode Scaleable Bus. The cache line size is 64 bytes. Source synchronous transfer is used for the address and data signals. At 100/133 MHz bus clock the address signals are double pumped to run at 200/266 MHz and a new address can be generated every two bus clocks for reads, or three bus clocks for writes. At 100/133 MHz bus clock the data signals are quad pumped to run at 400/533 MHz and an entire 64-byte cache line can be transferred in two bus clocks.

The Scalable Bus supports up to 12 simultaneous outstanding transactions. The MCH also has a 12-deep IOQ and therefore does not need to limit the number of simultaneous outstanding

5

int_{el}®

5.1.3 System Bus Dynamic Inversion

The MCH supports Dynamic Bus Inversion (DBI) both when driving and when receiving data from the system bus. DBI limits the number of data signals that are driven to a low voltage on each quad pumped data phase. This decreases the power consumption of the MCH. DBI[3:0]# indicate if the corresponding 16 bits of data are inverted on the bus for each quad pumped data phase (see Table 5-1).

Table 5-1. DBI Signals to Data Bit Mapping

DBI[3:0]#	Data Bits
DBI0#	HD[15:0]#
DBI1#	HD[31:16]#
DBI2#	HD[47:32]#
DBI3#	HD[63:48]#

When the processor or the MCH drives data, each 16-bit segment is analyzed. If more than 8 of the 16 signals would normally be driven low on the bus, the corresponding DBI# signal is asserted and the data is inverted prior to being driven on the bus. When the processor or the MCH receives data, it monitors DBI[3:0]# to determine if the corresponding data segment should be inverted.

Dynamic Bus Inversion (DBI) is a technique used to guarantee that a maximum of half the data signals' values are active (1 internally, or 0 on the system bus). The scheme groups the data bus into groups of 16 signals. In every group the number of active signals is counted. If more than eight active signals are present, the group's signals are inverted and the inversion indication (DBI internally, DBI# on the system bus) is activated. Otherwise, the group is not inverted.

DBI is used to minimize signal switching within a group of 16 data signals. It is also used to minimize on-die terminations' power consumption. DBI specification requires that for most of the time, there will be no more than 8 active data signals in a group of 16. It requires that there will **never** be more than 9 active data signals in a group of 16.

5.1.4 System Bus Interrupt

Intel Xeon processors support system bus interrupt delivery. They do not support the APIC serial bus interrupt delivery mechanism. Interrupt-related messages are encoded on the system bus as "Interrupt Message Transactions." In an E7501 chipset platform, system bus interrupts can originate from the processor on the system bus or from a downstream device on the hub interface. In the later case the MCH drives the "Interrupt Message Transaction" on the system bus.

In an E7501 chipset platform, the ICH3-S contains IOxAPICs, and its interrupts are generated as upstream hub interface memory writes. Furthermore, *PCI Local Bus Specification, Revision 2.2* defines MSIs (Message Signaled Interrupts) that are also in the form of memory writes. A *PCI Local Bus Specification, Revision 2.2* device can generate an interrupt as an MSI cycle on its PCI bus instead of asserting a hardware signal to the IOxAPIC. The MSI can be directed to the IOxAPIC, which in turn generates an interrupt as an upstream hub interface memory write. Alternatively, the MSI can be forwarded directly to the system bus. The target of an MSI is dependent on the address of the interrupt memory write. The MCH forwards inbound hub interface memory writes to address 0FEEx_xxxh, to the system bus as "Interrupt Message Transactions."

The MCH accepts message based interrupts from its hub interface and forwards them to the system bus as Interrupt Message Transactions. The interrupt messages presented to the MCH are in the form of memory writes to address 0FEEx_xxxh. At the hub interface, the memory write interrupt message is treated like any other memory write; it is either posted into the inbound data buffer (if space is available) or retried (if data buffer space is not immediately available). Once posted, the memory write from the hub interface, to address 0FEEx_xxxh, is decoded as a cycle that needs to be propagated by the MCH to the system bus as an Interrupt Message Transaction.

The MCH supports re-directing Lowest Priority delivery mode interrupts to the processor which is executing the lowest priority task thread. The MCH re-directs interrupts based on the task priority status of each processor thread. The task priority of each processor thread is periodically downloaded to the MCH via the xTPR (Task Priority Register) Special Transaction. The MCH re-directs HI and PCI originated interrupts as well as IPIs.

The MCH also broadcasts EOI cycles generated by a CPU downstream to the HI interface.

5.2 Hub Interface A

The MCH's 8-bit Hub Interface A is used to connect to the ICH3-S. HI_A supports parallel termination. The MCH uses Hub Interface 1.5 electricals on HI_A. HI_A also supports 64-bit upstream addressing via the hub interface extended address mechanism.

5.3 Hub Interface B, C, and D

Hub Interface B, C, and D support Hub Interface 2.0 only and is designed to connect to the P64H2 component. The following assumptions apply to these interfaces:

- Supports HI 2.0 devices only
- Does not support 8-bit devices
- Does not operate in 1x mode
- Supports HI 2.0 ECC only
- Parallel termination only
- Does not support upstream writes or special cycles that requires completion. The only upstream cycle that can require a completion is a read.

5.4 Frequency and Bandwidth

In the MCH, the same core clock frequency is used for the processor system bus and the memory interface. The system bus and memory interface frequencies must be operating synchronously. The following two configurations are supported:

System Bus Clock	System Bus Transfer/s	System Bus BW	DRAM Clock	DRAM Transfer/s	DDR Dual- Channel BW	DDR Single- Channel BW
133 MHz	533 MT/s	4.27 GB/s	133 MHz	266 MT/s	4.27 GB/s	2.1 GB/s
100 MHz	400 MT/s	3.2 GB/s	100 MHz	200 MT/s	3.2 GB/s	1.6 GB/s

NOTE: A 266 MT/s DRAM can be used with a processor supporting a 400 MHz system bus, although the memory interface will be operating at 100 MHz, not 133 MHz.

5.5 System Memory Controller

The MCH can support DDR 266 and DDR 200 using SSTL_2 signaling. The MCH includes support for:

- In dual-channel mode, up to 16 GB of 266 MHz or 200 MHz DDR SDRAM installed for a maximum address decode of 16 GB 64 MB unless memory reclaim feature is used.
- In single-channel mode, up to 8 GB of 266 MHz or 200 MHz DDR SDRAM installed for a maximum address decode of 8 GB 32 MB unless memory reclaim feature is used.
- DDR 266 or DDR 200 registered 184-pin ECC DDR SDRAM DIMMs
- 72-bit wide x4 and x8 DIMMs using 128-Mb, 256-Mb, and 512-Mb SDRAM technology.
- Maximum of four DIMMs per channel, single-rank and/or double-rank
- Cache Latency of 2 and 2.5 only.

The eight chip select lines support up to eight rows of double-rank SDRAM DIMMs. The MCH does not support non-ECC DIMMs or unbuffered DIMMs.

5.5.1 Single- and Dual-Channel Operation

The MCH contains a dual-channel DDR interface, with 128 data bits and 16 ECC bits. It may be run in either a dual or single-channel mode. In single-channel mode, the MCH contains a DDR interface with 64 data bits and 8 ECC bits.

In dual-channel mode, the two channels operate in "lock-step" with each other. The data is double quad word interleaved between the channels with the low DQW on channel A and the high DQW on channel B. A burst of 4 data items, which takes 2 clocks is required for one cache line (64 bytes). A 256-bit interface transfers the data at the core clock frequency internally, matching the memory bandwidth.

In dual-channel mode the memory populated in the two channels must be identical DIMM configurations. For example, Slot 0 of channel A must contain the same configuration DIMM as Slot 0 of channel B. The configuration consists of the same number of physical rows or banks (1 or 2), row address bits, column address bits, the same technology part (128-Mb, 256-Mb, 512-Mb), and the same DRAM chip width (x4, x8). It is not necessary to match DIMM timings. A CL=2.0 DIMM can be paired with a CL=2.5 DIMM as long as the geometry matches.

In single-channel operation channel B is disabled. A burst of 8 data items, which takes 4 clocks is required for one cache lines (64 bytes). The 256-bit interface is multiplexed on a DQW basis onto the single-channel. Only one DIMM need be added at one time.

5.5.2 Memory Organization and Configuration

In the following discussion the term "row" refers to a set of memory devices that are simultaneously selected by a chip select signal. The MCH supports a maximum of eight rows of memory. For the purposes of this discussion, a "side" of a DIMM is equivalent to a "row" of SDRAM devices.

For the DDR SDRAM interface, Table 5-2 lists the supported DDR DIMM configurations. Note that the MCH supports configurations defined in the JEDEC DDR DIMM specification only (A,B,C). For more information on DIMM configurations, refer to the *JEDEC DDR DIMM specification*.

Parts	128 Mb	256 Mb	512 Mb
x8, single row	128 MB	256 MB	512 MB
x8, double row	256 MB	512 MB	1 GB
x4, single row	256 MB	512 MB	1 GB
x4, double row	512 MB	1 GB	2 GB

Table 5-2. Memory per DIMM at Each DRAM Density

NOTE: DIMMs must be populated in pairs, and the DIMMs in a pair must be identical.

5.5.2.1 Configuration Mechanism for DIMMs

Detection of the type of SDRAM installed on the DIMM is supported via Serial Presence Detect (SPD) mechanism as defined in the JEDEC DIMM specification. This uses the SCL, SDA, and SA[2:0] pins on the DIMMs to detect the type and size of the installed DIMMs. No special programmable modes are provided on the MCH for detecting the size and type of memory installed. Type and size detection must be done via the serial presence detection pins and is required to configure the MCH.

Memory Detection and Initialization

Before any cycles to the memory interface can be supported, the MCH SDRAM registers and the DRAM devices must be initialized. The MCH must be configured for operation with the installed memory types. Detection of memory type and size is done via the System Management Bus (SMB) interface on the ICH3-S. This two-wire bus is used to extract the SDRAM type and size information from the Serial Presence Detect port on the SDRAM DIMMs. SDRAM DIMMs contain a 5-pin Serial Presence Detect interface, including SCL (serial clock), SDA (serial data), and SA[2:0] (slave address). Devices on the SMBus bus have a 7-bit address. For the SDRAM DIMMs, the upper four bits are fixed at 1010. The lower three bits are strapped on the SA[2:0] pins. SCL and SDA are connected to the System Management Bus on the ICH3-S. Thus, data is read from the Serial Presence Detect port on the DIMMs via a series of I/O cycles to the ICH3-S. BIOS needs to determine the size and type of memory used for each of the rows of memory to properly configure the MCH memory interface.

SMBus Configuration and Access of the Serial Presence Detect Ports

For more details, refer to the Intel[®] 82801CA I/O Controller Hub 3-S(ICH3-S) Datasheet.

Memory Register Programming

The required information for programming the SDRAM registers is obtained from the Serial Presence Detect ports on the DIMMs. The Serial Presence Detect ports are used to determine Refresh Rate, Memory Address and Memory Data Buffer Strength, Row Type (on a row by row basis), SDRAM Timings, Row Sizes, and Row Page Sizes.

5.5.3 Memory Address Translation and Decoding

The MCH contains address decoders that translate the address received on the host bus or the hub interface. Decoding and translation of these addresses vary with the three SDRAM devices. Also, the number of pages, page sizes, and densities supported vary with the device. The MCH supports 128-Mb, 256-Mb, and 512-Mb SDRAM devices. The multiplexed row/column address to the SDRAM memory array is provided by the memory bank select and memory address signals. These addresses are derived from the host address bus as defined by Table 5-3 for SDRAM devices.

Tech (Mbit)	Configuration	R/C/B	Row Size Page Size		Addr	BA1	BAO	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	AO
128	8 Meg x 4	12 x 11	512 MB	Row	28	15	16		27	26	25	28	17	24	23	22	21	20	19	18
120	x 4 x 4 bks	x 1 x 2	32 KB	Col					14	AP	13	12	11	10	9	8	7	6	5	"0"
128	4 Meg x 8	12 x10	256 MB	Row	27	15	14		27	26	25	16	17	24	23	22	21	20	19	18
120	x 4 bks x 2		16 KB	Col						AP	13	12	11	10	9	8	7	6	5	"0"
256	16 Meg 13 x 4 x 11	13 x 11 x 2	1024 MB	Row	29	15	16	29	27	26	25	28	17	24	23	22	21	20	19	18
200	x 4 x 4 bks		32 KB	Col					14	AP	13	12	11	10	9	8	7	6	5	"0"
050	8 Meg	13	512 MB	Row	28	15	14	28	27	26	25	16	17	24	23	22	21	20	19	18
256	x 8 x 4 bks	x10 x2	16 KB	Col						AP	13	12	11	10	9	8	7	6	5	"0"
512	32 Meg x 4	13	2048 MB	Row	30	17	16	29	27	26	25	28	30	24	23	22	21	20	19	18
212	x 4 x 4 bks	x12 x 2	64 KB	Col				15	14	AP	13	12	11	10	9	8	7	6	5	"0"
540	16 Meg	13	1024 MB	Row	29	15	16	29	27	26	25	28	17	24	23	22	21	20	19	18
512	x 8 x 4 bks	x 11 x 2	32 KB	Col					14	AP	13	12	11	10	9	8	7	6	5	"0"

Table 5-3. Address Translation and Decoding in Dual-Channel Mode

Tech (Mbit)	Configuration	R/C/B	Row Size Page Size		Addr	BA1	BA0	A12	A11	A10	A9	A8	A7	A 6	A5	A4	A3	A2	A1	AO
128	8 Meg	12 x 11	256 MB	Row	27	14	15		26	25	24	27	16	23	22	21	20	19	18	17
120	x 4 x 4 bks	x 11 x 2	16 KB	Col					13	AP	12	11	10	9	8	7	6	5	"0"	"0"
400	4 Meg x 8	12	128 MB	Row	27	14	13		26	25	24	15	16	23	22	21	20	19	18	17
128	x 4 bks x 2		8 KB	Col						AP	12	11	10	9	8	7	6	5	"0"	"0"
256	16 Meg x 4	13 x 11	512 MB	Row	29	14	15	28	26	25	24	27	16	23	22	21	20	19	18	17
200	x 4 x 4 bks		16 KB	Col					13	AP	12	11	10	9	8	7	6	5	"0"	"0"
256	8 Meg	13	256 MB	Row	27	14	13	27	26	25	24	15	16	23	22	21	20	19	18	17
256	x 8 x 4 bks	x 10 x 2	8 KB	Col						AP	12	11	10	9	8	7	6	5	"0"	"0"
512	32 Meg x 4	13 x 12	1024 MB	Row	29	16	15	28	26	25	24	27	29	23	22	21	20	19	18	17
512	x 4 x 4 bks	x 12 x 2	32 KB	Col				14	13	AP	12	11	10	9	8	7	6	5	"0"	"0"
510	16 Meg	13	512 MB	Row	28	14	15	28	26	25	24	27	16	23	22	21	20	19	18	17
512	x 8 x 4 bks	x 11 x 2	16 KB	Col					13	AP	12	11	10	9	8	7	6	5	"0"	"0"

 Table 5-4. Address Translation and Decoding in Single-Channel Mode

5.5.4 DQ-DQS Mapping

The following table provides the mapping between data bits and the DQS signals.

DQ	DQS Mapping in x8 Configurations	DQS Mapping in x4 Configurations
CB_x[7:4]	8	17
CB_x[3:0]	8	8
DQ_x[63:60]	7	16
DQ_x[59:56]	7	7
DQ_x[55:52]	6	15
DQ_x[51:48]	6	6
DQ_x[47:44]	5	14
DQ_x[43:40]	5	5
DQ_x[39:36]	4	13
DQ_x[35:32]	4	4
DQ_x[31:28]	3	12
DQ_x[27:24]	3	3
DQ_x[23:20]	2	11
DQ_x[19:16]	2	2
DQ_x[15:12]	1	10
DQ_x[11:8]	1	1
DQ_x[7:4]	0	9
DQ_x[3:0]	0	0

5.5.5 DDR Clock Generation

The MCH drives the clocks to the DIMMs. Registered DIMMs require one clock pair per DIMM. A motherboard can implement three DIMMs per channel, or four DIMMs per channel. The following table provides the clock connections on the motherboard.

Signal	3-DIMM Motherboard	4-DIMM Motherboard
CMDCLK_x3, CMDCLK_x3#	No connect	DIMM3 CK0, CK0#
CMDCLK_x2, CMDCLK_x2#	DIMM2 CK0, CK0#	DIMM2 CK0, CK0#
CMDCLK_x1, CMDCLK_x1#	DIMM1 CK0, CK0#	DIMM1 CK0, CK0#
CMDCLK_x0, CMDCLK_x0#	DIMM0 CK0, CK0#	DIMM0 CK0, CK0#

5.5.6 Refresh

The MCH contains a multi-level refresh operation to reduce the refresh performance impact. Refresh events are queued and performed opportunistically, when the DRAM pipe is idle. Standard Auto Refresh operation is performed in a staggered manner for only populated pairs of rows.

5.5.7 Thermal Management

The MCH provides a thermal management method that selectively reduces read and write accesses to system memory when the access rate crosses the predetermined thermal threshold. Read and write management operate independently; each has its own 64-bit register to control operation. Memory reads typically cause power dissipation in the DRAM chips, while memory writes typically cause power dissipation in the MCH.

5.5.7.1 Enabling Thermal Management

Thermal management may be enabled by one of two mechanisms:

- 1. Software forced thermal management via the SRTM (SWTM) bit
- 2. Counter Mechanism

Mechanism 1 allows software to enable throttling independent of the counter mechanism. This is controlled via the Start Read/Write Thermal Management (SRTM / SWTM) bit and puts thermal management into effect (if threshold values are crossed) until the SRTM / SWTM bit is cleared. Mechanism two requires programming a specific value for Read/Write Thermal Management Mode (RTMM / WTMM) that enables use of the counter mechanism for thermal management.

When the counter mechanism is used, the number of hex words (in 32-byte chunks) read/written is counted within a global sampling window. If the number exceeds the programmed threshold, thermal management is invoked and remains in effect until the Read/Write Thermal Management Time (RTMT / WTMT) has expired.

5.5.7.2 Thermal Management Parameters

While the software forced thermal management and counter mechanism settings determine *when* to thermal manage, additional bits determine **how much** to thermal manage.

Once thermal management is invoked, users can specify with precise granularity how many reads/ writes to allow in a specific time period. If the programmed number of hex words is read/written within the time period, no more reads/writes will occur until the time period ends.

The detailed hexword number and time period are set in the Read/Write Thermal Management Hexword Maximum (RTMHM / WTMHM) and Read/Write Thermal Monitoring Window (RTMW / WTMW), respectively. Note that these are **not** the same as the global sampling windows mentioned above. The global values mentioned above are used to determine whether or not to go into thermal management mode. Once thermal management is invoked, the Thermal Management Hexword Max and Thermal Monitoring Window provide finer granularity regarding the amount of reads/writes to allow.

5.5.7.3 Thermal Management Duration

As previously stated, when thermal management is enabled by the SRTM (or SWTM) bit, it will remain enabled until the SRTM (or SWTM) bit is cleared by software. Note that thermal management only goes into effect when the access thresholds are crossed.

For thermal management invoked via the counter mechanism mode, a Read/Write Thermal Management Time (RTMT / WTMT) determines how long thermal management remains in effect, once invoked. This is a multiplier of the number of global sampling windows. Therefore, if thermal management is enabled via the counter mechanism (RTMM / WTMM setting), and the number of allowable hexwords in the global sampling window is exceeded, thermal management will be in effect for a period equal to the value in RTMT times the length of time defined by the global sampling window.

5.5.7.4 Thermal Management Lock

The write thermal management control register contains lock bits, which control both the read and write registers. These lock bits can force some or all of the values in the thermal management control registers to become read-only; thus, no later writes can change either register until reset. Three lock modes are possible:

- Not locked
- All bits except the SRTM and SWTM are locked
- All bits including SRTM and SWTM are locked

5.6 **Power and Thermal Management**

The chipset supports the ACPI 1.0 system states: S0, S1, S5, C0, C1, and C2.

5.6.1 **Processor Power State Control**

- C0 (Full On): This is the only state that runs software. All clocks are running, STPCLK# is deasserted, and the processor core is active. The processor can service snoops and maintain cache coherency in this state.
- C1 (Auto-Halt): The first level of power reduction occurs when the processor executes an Auto-Halt instruction. This stops the execution of the instruction stream. The processor can service snoops and maintain cache coherency in this state.
- C2 (Stop Grant): The next level of power reduction occurs when the processor is placed in the Stop Grant state by the assertion of STPCLK#. The processor stops providing internal clock signals to all processor core units except the system bus and APIC units. The processor continues to snoop bus transactions and service interrupts while in Stop Grant state.

5.6.2 Sleep State Control

- S0 (Awake): In this state all power planes are active.
- S1 (Stop Grant): S1 state is the same as C2 state (Stop Grant).
- S5 (Soft Off): The next level of power reduction occurs when the memory power is shut down in addition to the clock synthesizer, ICH3-S, MCH, and the processor power planes. The ICH3-S resume well is still powered.
- G3 (Mechanical Off): In this state only the RTC well is powered. The system can only reactivate when the power switch can deliver power to the system.

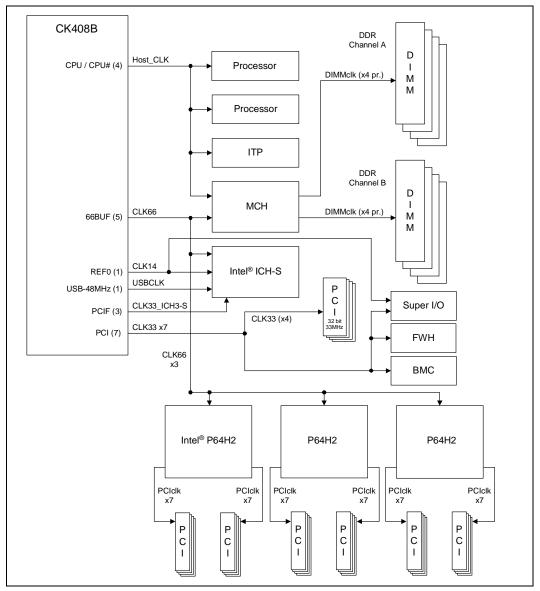

5.7 Clocking

Figure 5-1 shows a block diagram of an E7501 chipset-based system. The MCH has the following clocks:

- 100/133 MHz, Spread spectrum, Low voltage (0.7 V) Differential HCLKINP/HCLKINN for PSB
- 66.667 MHz, Spread spectrum, 3.3 V CLK66 for hub interface

The MCH has inputs for a low voltage, differential pair of clocks called HCLKINP and HCLKINN. These pins receive a host clock from the external clock synthesizer. This clock is used by the host interface and system memory logic.

Figure 5-1. Intel[®] E7501 Chipset-Based System Clocking Diagram

5.8 RASUM Features

5.8.1 **DRAM ECC**

In dual-channel mode, the ECC used for DRAM provides S4EC/D4ED x4 Single Device Data Correction (SDDC) technology protection for x4 SDRAMs, but not for x8 DRAMs. In single-channel mode and x8 DRAMs, only SEC/DED technology protection is supported.

The x4 SDDC is an ECC algorithm designed to recover from a single DRAM chip failure of the data signals. In a x4 DDR memory device, x4 SDDC provides error detection and correction for 1, 2, 3 or 4 data bits within that single device and provides error detection, up to 8 data bits, within two devices. Therefore, data or data pin errors in the same chip are correctable; double errors across two chips are detectable. The SxEC-DxED algorithm is similar to SEC-DED (x = number of bits, 4 or 8).

5.8.2 DRAM Scrubbing

A special DRAM scrub algorithm will walk through all DRAM doing reads followed by writes back to the same location. Correctable errors found by the read are corrected and then the good data is written back to DRAM. A write is done in all cases, whether there were errors or not. This looks like a read-modify-write of 0 bytes to the system. The scrub unit starts at address 0 upon reset. Periodically, the unit will scrub one line and then increment the address counter by 64 bytes or one line. A 16-GB memory array would be completely scrubbed in approximately one day.

5.8.3 DRAM Auto-Initialization

The DRAM Auto-initialization algorithms initialize memory at reset to ensure that all lines have valid ECC.

int_{el}®

6

This chapter provides the absolute maximum ratings, thermal characteristics, and DC characteristics for the MCH.

6.1 Absolute Maximum Ratings

Table 6-1 lists the E7501 chipset MCH's maximum environmental stress ratings. Functional operation at the absolute maximum and minimum is neither implied nor guaranteed. Functional operating parameters are listed in the DC tables.

Warning: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operating beyond the "operating conditions" is not recommended, and extended exposure beyond "operating conditions" may affect reliability.

Table 6-1. Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Notes
T _{storage}	Storage Temperature	-55	150	°C	
V _{CC_MCH}	1.2 V Supply Voltage with respect to VSS	-0.38	2.1	V	
V _{TT_AGTL}	Supply Voltage input with respect to VSS	-0.38	2.1	V	
V _{DD_DDR}	DDR Buffer Supply Voltage	-0.38	3	V	

6.2 Thermal Characteristics

Consult the Intel[®] E7500/E7501/E7505 Chipset MCH Thermal Design Guidelines for information on thermal characteristics.

6.3 **Power Characteristics**

Table 6-2. DC Characteristics Functional Operating Range

Symbol	Parameter	Min	Тур	Max	Unit	Notes
I _{CC}	1.2 V MCH Core and HI			4.5	Α	
	1.525 V AGTL+			2.1	А	1
IVTT	1.102 V AGTL+			2.1	A	2
I _{dd_DDR}	2.5 V Vdd DDR			6.8	А	
NOTES: 1. When using 2. When using	g the Intel [®] Xeon™ processor. g the Intel [®] Pentium [®] M processor.	·				

6.4 DC Characteristics

6.4.1 I/O Interface Signal Groupings

The signal description includes the type of buffer used for the particular signal:

- AGTL+ Open Drain AGTL+ interface signal. Refer to the *AGTL*+ *I/O Specification* for complete details. The MCH integrates AGTL+ termination resistors.
- CMOS CMOS buffers
- SSTL-2 DDR Signaling Interface
- **HI-2** Hub Interface 2.0 buffer type
- ANALOG Applies to certain signals used as reference voltages or compensation circuits

Table 6-3. System Bus Interface Signal Groups

Signal Group	Signal Type	Signals	Notes
(a)	AGTL+ I/O	ADS#, AP[1:0]#, BNR#, DBI[3:0]#, DBSY#, DP[3:0]#, DRDY#, HA[35:3]#, HADSTB [1:0] #, HD[63:0], HDSTBP[3:0]#, HDSTBN[3:0]#, HIT#, HITM#, HREQ[4:0]#	
(b)	AGTL+ Output	BPRI#, BREQ0#, CPURST#, DEFER#, HTRDY#, RS[2:0]#, RSP#	
(c)	AGTL+ Input	HLOCK#, XERR#, BINIT#	
(d)	Analog Input	HDVREF[3:0], HAVREF[1:0], CCVREF, HXSWNG, HYSWNG	
(e)	Analog Input	HXRCOMP, HYRCOMP	
(f)	Clock Inputs	HCLKINN, HCLKINP	
(g)	AGTL+ Termination Voltage	VTT	

Table 6-4. DDR Interface Signal Groups

Signal Group	Signal Type	Signals	Notes
(h)	SSTL-2 I/O	DQ_x [63:0], CB_x [7:0], DQS_x [17:0], RCVEN_x	1
(i)	SSTL-2 Output	BA_x[1:0], CAS_x#, CKE_x, CMDCLK_x[3:0], CMDCLK_x[3:0]#, CS_x[7:0]#, MA_x[12:0], RAS_x#, WE_x#	1
(j)	Analog Input	DDRVREF_x[3:0], DDRCVO_x, DDRCOMP_x, ODTCOMP	1

NOTE:

1. x = A or B DDR channel

Table 6-5. Hub Interface 2.0 (HI_B, HI_C, HI_D) Signal Groups

Signal Group	Signal Type	Signals	Notes
(k)	HI-2.0 I/O	HI_x[21:0], PSTRB_x[1:0], PSTRB_x[1:0]#, HIRCOMP_x	1
(I)	CMOS Input Clock	CLK66	2
(m)	Analog Input	HIVREF_x, HISWNG_x	1
	or D Hub Interface ch being shared across	nannel 3 HI_A, HI_B, HI_C and HI_D	

Table 6-6. Hub Interface 1.5 (HI_A) Signal Groups

Signal Group	Signal Type	Signals	Notes
(n)	HI-1.5 I/O	HI_A [11:0], PSTRB_A, PSTRB_A#, HIRCOMP_A	
(0)	CMOS Input Clock	CLK66	1
(p)	Analog Input	HIVREF_A, HISWNG_A	
NOTE: 1. CLK66 is	s being shared across	B HI_A, HI_B, HI_C and HI_D	

Table 6-7. SMBus Signal Group

Signal Group	Signal Type	Signals	Notes
(q)	SMBus I/O Buffer	SMB_CLK, SMB_DATA	

Table 6-8. Reset and Miscellaneous Signal Group

Signal Group	Signal Type	Signals	Notes
(r)	Miscellaneous CMOS Input	RSTIN#, PWRGOOD, XORMODE#	

6.4.2 DC Characteristics at VCC1_2 = 1.2 V ± 5%

Table 6-9. Operating Condition Supply Voltage

Symbol	Signal Group	Parameter	Min	Nom	Max	Unit	Notes	
VTT	(g)	Host AGTL+ Termination Voltage	1.15	1.3	1.525	V	1	
			0.997	1.05	1.102	V	2	
VCC2_5		DDR Buffer Voltage	2.3	2.5	2.7	V		
VCC1_2		MCH Core Voltage	1.14	1.2	1.26	V		
NOTES: 1. When usir 2. When usir	NOTES: 1. When using the Intel [®] Xeon [™] processor. 2. When using the Intel [®] Pentium [®] M processor.							

6.4.3 System Bus Interface DC Characteristics

Table 6-10. System	Bus Interface DC	Characteristics

Symbol	Signal Group	Parameter	Min	Nom	Max	Unit	Notes
M					(0.63 × VTT) – 0.1 GTLREF	V	1
V _{IL_H}	(a), (c)	Host AGTL+ Input Low Voltage			(2/3 × VTT) – 0.1 GTLREF	V	2
N/	(a), (c)		(0.63 × VTT) + 0.1GTLREF			V	1
V _{IH_H}	(a), (C)	Host AGTL+ Input High Voltage	(2/3 × VTT) + 0.1GTLREF			V	2
V _{OL_H}	(a), (b)	Host AGTL+ Output Low Voltage		1/3 × VTT	(1/3 × VTT) + 0.1 × GTLREF	V	
V _{OH_H}	(a), (b)	Host AGTL+ Output High Voltage	VTT – 0.1	VTT		V	
RTT		Host Termination Resistance	46	50	54	Ω	
I _{OL_H}	(a), (b)	Host AGTL+ Output Low Leakage			(2/3 × VTTmax) / RTT min	А	
I _{L_H}	(a), (c)	Host AGTL+ Input Leakage Current	15			μΑ	
C _{PAD}	(a), (c)	Host AGTL+ Input Capacitance	1		3.5	pF	
	(1)	Host Common Clock Reference		0.63 × VTT		V	1
HCCVREF	(f)	Voltage		2/3 × VTT		V	2
	(.1)	Host Address and Data Reference		0.63 × VTT		V	1
HxVREF	(d)	Voltage		2/3 × VTT		V	2
HXSWNG, HYSWNG	(d)	Host Compensation Reference Voltage		1/3 × VTT		V	

NOTES: 1. When using the Intel[®] Xeon™ processor. 2. When using the Intel[®] Pentium[®] M processor. Guaranteed by design.

6.4.4 DDR Interface DC Characteristics

Symbol	Signal Group	Parameter	Min	Nom	Мах	Unit	Notes
V _{IL (DC)}	(h)	DDR Input Low DC Voltage			DVREF_x - 0.150	V	
V _{IH (DC)}	(h)	DDR Input High DC Voltage	DVREF_x + 0.150			V	
V _{IL (AC)}	(h)	DDR Input Low AC Voltage			DVREF_x - 0.310		
V _{IH (AC)}	(h)	DDR Input High AC Voltage	DVREF_x + 0.310				
V _{OL}	(h), (i)	DDR Output Low Voltage	0		0.5	V	1
V _{OH}	(h), (i)	DDR Output High Voltage	1.9		VCC2_5	V	1
I _{OL (DC)}	(h), (i)	DDR Output Low Current			- 35	mA	
I _{OH(DC)}	(h), (i)	DDR Output High Current			35	mA	
I _{OL (AC)}	(h), (i)	DDR Output Low Current			50	mA	
I _{OH (AC)}	(h), (i)	DDR Output High Current			50	mA	
I _{Leak}	(h)	Input Leakage Current			50	uA	
C _{IN}	(h)	Input Pin Capacitance	2.5		5	pF	
C _{OUT}	(h)	Output Pin Capacitance	2.5		5	pF	
DDRVREF_x	(j)	DDR Reference Voltage		VCC2_5 / 2		V	

Table 6-11. DDR Interface DC Characteristics

NOTE: Actual values dependant on termination resistor values and RCOMP strength modes.

Hub Interface 2.0 DC Characteristics 6.4.5

Symbol	Signal Group	Parameter	Min	Nom	Max	Unit	Notes
V _{IL_HI}	(k)	Hub Interface Input Low Voltage	- 0.3		HIVREF – 0.1	V	
V _{IH_HI}	(k)	Hub Interface Input High Voltage	HIVREF+0.1		1.2	V	
V _{OL_HI}	(k)	Hub Interface Output Low Voltage			0.05	V	
V _{OH_HI}	(k)	Hub Interface Output High Voltage	HISWNG - 0.050		HISWNG + 0.050	V	
I _{IL_HI}	(k)	Hub Interface Input Leakage Current			25	μΑ	
C _{IN_HI}	(k)	Hub Interface Input Pin Capacitance			5.0	pF	
ΔC_{IN}		Strobe to Data Pin Capacitance Delta	- 0.5		0.5	pF	
L _{PIN}		Pin Inductance (signal)			5	nH	
Z _{PD}		Pull-Down Impedance	45	50	55	Ω	
Z _{PU}		Pull-Up Impedance	22.5	25	27.5	Ω	
V _{CC}		I/O Supply Voltage		1.2		V	
VccaHI		Hub Interface Analog Voltage		1.2		V	
V _{IL}	(I)	CLK66 Input Low Voltage			0.8	V	
V _{IH}	(I)	CLK66 Input High Voltage	2.4			V	
C _{Clk}	(I)	CLK66 Pin Capacitance	5.0		8.0	pF	
HIVREF_x	(m)	Hub Interface Reference Voltage	0.343	0.353	0.357	V	1
HISWNG_x	(m)	Hub Interface Swing Reference Voltage		0.8		V	1
HIRCOMP_x	(k)	Buffer Compensation	24.75	25	25.25	Ω	1

Table 6-12. Hub Interface 2.0 DC Characteristics

NOTE: 1. x = Hub Interface B, C, D

6.4.6 Hub Interface 1.5 DC Characteristics

Symbol	Signal Group	Parameter	Min	Nom	Max	Unit	Notes
V _{IL_HI}	(n)	Hub Interface Input Low Voltage	- 0.3	0	HIVREF – 0.1	V	
V _{IH_HI}	(n)	Hub Interface Input High Voltage	HIVREF + 0.1		1.2	V	
V _{OL_HI}	(n)	Hub Interface Output Low Voltage			0.05	V	
V _{OH_HI}	(n)	Hub Interface Output High Voltage	HISWNG - 0.050		HISWNG + 0.050	V	
I _{IL_HI}	(n)	Hub Interface Input Leakage Current			25	μA	
C _{IN_HI}	(n)	Hub Interface Input Pin Capacitance			5.0	pF	
ΔC_{IN}		Strobe to data Pin Capacitance delta	- 0.5		0.5	pF	
L _{PIN}		Pin Inductance (signal)			5.0	nH	
Z _{PD}		Pull-Down Impedance	45	50	55	Ω	
Z _{PU}		Pull-Up Impedance	22.5	25	27.5	Ω	
V _{CCP}		I/O Supply Voltage		1.2		V	
VccaHI		Hub Interface Analog Voltalge		1.2		V	
V _{IL}	(0)	CLK66 Input Low Voltage			0.8	V	
V _{IH}	(0)	CLK66 Input High Voltage	2.4			V	
C _{Clk}	(0)	CLK66 Pin Capacitance	5.0		8.0	pF	
HIVREF_A	(p)	Hub Interface Reference Voltage	0.343	0.35	0.357	V	
HISWNG_A	(p)	Hub Interface Swing Reference Voltage		0.8		V	
HIRCOMP_A	(n)	Buffer Compensation	24.75	25	25.25	Ω	

Table 6-13. Hub Interface 1.5 DC Characteristics

6.4.7 SMBus DC Characteristics

Symbol	Signal Group	Parameter	Min	Nom	Max	Unit	Notes
V _{IL_SMB}	(q)	SMBus Input Low Voltage	- 0.5	0	0.8	V	
V_{IH_SMB}	(q)	SMBus Input High Voltage	2.1		Vcc_SMBus	V	
V _{OL_SMB}	(q)	SMBus Output Low Voltage			0.4	V	1
I _{IL_SMB}	(q)	SMBus Input Leakage Current		10		μΑ	
C _{IN_SMB}	(q)	SMBus Pin Capacitance		10		pF	
Vcc_SMBus		SMBus Voltage	3.135	3.3	3.465	V	2

Table 6-14. SMBus DC Characteristics

NOTES:

1. At Vol max, lol = 4 mA

2. Vcc_SMBus refers to the voltage that the SMBus interface signals are pulled to on the motherboard.

6.4.8 Reset and Miscellaneous CMOS Inputs DC Characteristics

Table 6-15. Reset and Miscellaneous CMOS Inputs DC Characteristics

Symbol	Signal Group	Parameter	Min	Nom	Max	Unit	Notes
V _{IL_CMOS}	(r)	CMOS Input Low Voltage	- 0.5		0.8	V	
V _{IH_CMOS}	(r)	CMOS Input High Voltage	2.1	Vcc_CMOS		V	
I _{IL_CMOS}	(r)	CMOS Input Low Voltage		10		μΑ	
C _{IN_CMOS}	(r)	CMOS Pin Capacitance		10		pF	
Vcc_SMBus		CMOS Voltage	3.135	3.3	3.465	V	1

NOTES:

1. Vcc_CMOS refers to the voltage applied to the 3.3 V tolerant input signals

Electrical Characteristics

intel®

Ballout and Package Specifications 7

This chapter provides the ballout and package dimensions for the E7501 MCH. In addition, internal component package trace lengths to enable trace length compensation are listed.

7.1 Ballout

Figure 7-1 shows a top view of the ballout footprint. Figure 7-2 and Figure 7-3 expand the detail of the ballout footprint to list the signal names for each ball. Table 7-1 lists the MCH ballout with the listing organized alphabetically by signal name.

	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17
AN			VSS	VCC2_5	DQ_A4	DQ_A1	VSS	VCC2_5	DQ_A8	RAS_A#	VSS	VCC2_5	DQ_A30	DQ_A20	VSS	VCC2_5	DQ_A18
АМ		VCC2_5	MA_A12	MA_A9	VSS	DQ_A5	DQS_A0	VSS	DQ_A12	DQ_A9	VSS	NC	DQ_A26	VSS	DQ_A21	Reserved	VSS
AL	VSS	DQ_B60	BA_A0	VSS	MA_A7	MA_A6	VSS	DQ_A6	DQ_A7	VCC2_5	DQS_A1	DQ_A14	VSS	DQ_A27	DQ_A17	VSS	DQ_A22
AK	VCC2_5	CS_B1#	VSS	MA_A11	MA_A8	VSS	Reserved	MA_A1	VSS	DQ_A13	DQS_A10	VSS	DDRVREF _A3	DQS_A12	DQ_A16	DQS_A11	DDRCVO _A
AJ	VSS	VSS	DQ_B61	DQ_B56	VCC2_5	ODTCOMP	MA_A3	VCC2_5	CMDCLK _A1	MA_A10	VCC2_5	DQ_A15	DQ_A29	VCC2_5	DQ_A31	DQ_A23	VCC2_5
АН	DQ_B55	DQ_B50	DQ_B51	VSS	CS_B0#	MA_A5	VSS	MA_A2	CMDCLK_ A1#	VSS	BA_A1	DQA_3	VSS	DQ_A28	DQ_A25	VSS	DDR COMP_A
AG	DQ_B38	DDRVREF _B1	VSS	DQ_B54	DQ_B57	VCC2_5	MA_A4	CMDCLK _A2	VSS	CMDCLK _A0	CMDCLK _A0#	VCC2_5	DQ_A10	RCVEN_A	VCC2_5	DQS_A2	CB_A5
AF	VCC2_5	VSS	DQ_B34	CS_B2#	VSS	DQS_B16	CS_B3#	VSS	CMDCLK _A2#	MA_A0	VCC2_5	DQ_A0	DQS_A9	VSS	DQ_A24	DQ_A19	VSS
AE	DQ_B33	DQS_B4	CS_B4#	VCC2_5	VSS	DQS_B6	DQS_B7	CS_B5#	CMDCLK _A3	CMDCLK _A3#	WE_A#	CAS_A#	DQ_A2	DQ_A11	CKE_A	DQS_A3	CB_A4
AD	VCC2_5	DQ_B37	DQ_B43	VSS	VCC2_5	CS_B6#	DQS_B15	VSS	VCC2_5	VCC2_5	VSS	VCC2_5	VSS	VCC2_5	VSS	VCC2_5	VSS
AC	VSS	VSS	DQS_B5	DQS_B13	VSS	DQ_B52	DQ_B62	VSS	DDRVREF _B0	VSS	VCC2_5	VSS	VCC2_5	VSS	VCC2_5	VSS	VCC2_5
AB	DQ_B41	DQ_B45	VCC2_5	DQS_B14	DQ_B46	VSS	DQ_B49	DQ_ B63	DQ_B58	VCC2_5	VSS						
AA	CB_B3	CB_B7	CB_B6	VSS	DQ_B40	DQ_B36	VCC2_5	DQ_B53	DQ_B59	VSS	VCC2_5					-	
Y	VCC2_5	VSS	CB_B2	DQS_B17	VCC2_5	DQ_B44	CS_B7#	VSS	DQ_B48	VCC2_5	VSS			VCCA1_2	VSS	VCCA1_2	VSS
w	VSS	DDRCVO	VSS	DDR COMP_B	DQS_B8	VSS	DQ_B32	DQ_B39	DQ_B35	VSS	VCC2_5			VSS	VCC1_2	VSS	VCC1_2
v	DQ_B22	RAS_B#	DQ_B23	VSS	NC	CB_B0	VSS	DQ_B42	DQ_B47	VCC2_5	VSS			VCCA1_2	VSS	VCC1_2	VSS
U	DQS_B2	VSS	DQS_B11	DQ_B18	VCC2_5	CB_B4	CB_B5	DDRVREF _B2	CB_B1	VSS	VCC2_5			VSS	VCC1_2	VSS	VCC1_2
т	VCC2_5	DQ_B27	VCC2_5	DQ_B17	DQ_B16	VSS	DQ_B21	DQ_B19	DQ_B31	VCC2_5	VSS			VCCA1_2	VSS	VCC1_2	VSS
R	VSS	DQ_B20	DQS_B12	VSS	DQS_B3	DQ_B30	VSS	DQ_B26	RCVEN_B	VSS	VCC2_5			VSS	VCC1_2	VSS	VCC1_2
Р	DQ_B25	VSS	DQ_B29	DQ_B24	VCC2_5	DQ_B15	DQ_B10	DQ_B14	DQ_B11	VCC2_5	VSS			VCCA1_2	VSS	VCC1_2	VSS
N	DDRVREF _B3	DQ_B28	VSS	NC	DQS_B10	VSS	DQ_B4	DQ_B7	DQ_B3	VSS	VCC2_5						
м	VCC2_5	CKE_B	DQS_B1	VSS	DQ_B6	CMDCLK _B1#	VSS	MA_B0	Reserved	VCC2_5	VSS						
L	VSS	VSS	DQ_B13	DQS_B0	VCC2_5	CMDCLK_ B1	CMDCLK_ B3#	VCC2_5	MA_B10	VSS	VCC2_5	VCC1_2	VSS	VCC1_2	VSS	VCC1_2	VSS
к	Reserved	DQ_B9	VCC2_5	DQ_B1	MA_B1	VSS	CMDCLK _B3	BA_B0	CMDCLK _B2#	VCC2_5	VCC1_2	VSS	VCC1_2	VSS	VCC1_2	VSS	VCC1_2
J	DQ_B8	DQ_B2	DQ_B12	VSS	CMDCLK _B0	CMDCLK _B0#	VSS	CMDCLK _B2	SMB_CLK	VSS	VSS	HIVREF_D	VSS	VSS	VSS	VSS	VSS
н	VCC2_5	VSS	DQS_B9	MA_B2	VCC2_5	CAS_B#	BA_B1	VSS	HI_D17	HI_D6	HI_D16	VSS	HI_D21	VCC1_2	VCC1_2	HI_C20	HISWNG _C
G	VSS	DQ_B5	VSS	MA_B3	MA_B5	VSS	VCC2_5	HI_D2	HI_D1	HI_D4	VSS	HI_D8	HIRCOMP _D	VSS	VSS	HI_C2	VSS
F	DQ_B0	MA_B4	MA_B6	VSS	MA_B9	VSS	VSS	HI_D3	HI_D18	HISWNG _D	HI_D14	HI_D15	VSS	HI_C18	HI_C5	VSS	HI_C15
Е	MA_B7	VSS	MA_B8	Reserved	VCC2_5	RSTIN#	HI_D20	VCC1_2	VSS	HI_D9	HI_D13	VCC1_2	HI_C7	HI_C4	VCC1_2	HI_C14	PUSTRBS _C
D	VCC2_5	WE_B#	VSS	VSS	Reserved	HI_D0	PSTRBF _D	PSTRBS _D	VSS	HI_D11	VSS	HI_C0	HI_C6	VSS	HI_C8	PUSTRBF _C	VSS
с	VSS	MA_B12	MA_B11	VSS	XOR MODE#	VSS	VSS	HI_D7	PUSTRBS _D	HI_C17	PSTRBF _C	HI_C3	VSS	HIRCOMP _C	HI_C11	HI_C13	HI_B2
в		VCC2_5	SMB _DATA	Reserved	VSS	VCC1_2	VSS	VSS	PUSTRBF _D	HI_C1	PSTRBS _C	VSS	HI_C16	HI_C10	VSS	HI_C12	HI_B17
A			VSS	VCC1_2	VSS	PWR GOOD	HI_D5	VCC1_2	HI_D10	HI_D12	VSS	VCC1_2	HIVREF_C	HI_C9	VSS	VCC1_2	HI_B4
	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17

Figure 7-1. MCH Ballout (left half of top view)

16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
NC	VSS	VCC2_5	DQ_A37	DQ_A42	VSS	VCC2_5	VSS	CS_A4#	VCC2_5	VSS	DQ_A51	VCC2_5	VSS			AN
DDRVREF _A2	CB_A6	VSS	DQ_A33	DQS_A5	VSS	DQ_A47	DQ_A54	VSS	DQS_A15	DQ_A55	VSS	DQ_A63	DQ_A58	DQ_A59		АМ
CB_A2	VCC2_5	DQ_A32	DQS_A4	VSS	DQ_A43	CS_A2#	DDR VREF_A1	DQS_A6	VSS	DQS_A7	DQ_A62	VSS	CS_A6#	CS_A7#	VCC2_5	AL
VSS	CB_A3	DQ_A36	VSS	DQS_A14	CS_A1#	VCC2_5	VSS	VCC2_5	CS_A5#	VSS	AP1#	RSP#	VSS	XERR#	VSS	AK
DQS_A8	DQ_A34	VCC2_5	DQS_A13	DQ_A46	VCC2_5	VSS	DQ_A57	VSS	DDRVREF _A0	AP0#	VCC_CPU	HA27#	HAVREF1	VSS	HA34#	AJ
CB_A1	VSS	DQ_A38	DQ_A41	VSS	DQ_A49	DQ_A60	DQS_A16	CS_A3#	VSS	HA33#	HA31#	VSS	HA21#	HA20#	VCC_CPU	АН
VSS	CB_A7	DQ_A39	VCC2_5	DQ_A52	DQ_A50	DQ_A56	VSS	BINIT#	HA32#	VSS	HA35#	HA26#	VCC_CPU	HA22#	VSS	AG
DQS_A17	DQ_A35	VSS	DQ_A45	DQ_A53	VSS	VSS	BREQ0#	VSS	HA30#	HA23#	VCC_CPU	HAVREF0	HA29#	VSS	HA25#	AF
CB_A0	DQ_A44	DQ_A40	CS_A0#	DQ_A48	DQ_A61	VCC2_5	VSS	HA28#	VCC_CPU	HA14#	HA10#	VSS	HA15#	HA11#	HADSTB0#	AE
VCC2_5	VSS	VCC2_5	VSS	VCC2_5	VSS	VSS	VSS	HA24#	HADSTB1#	VSS	HA16#	HA9#	VSS	HA6#	VCC_CPU	AD
VSS	VCC2_5	VSS	VCC2_5	VSS	VSS	VCC_CPU	HA19#	VSS	HA18#	HA12#	VCC_CPU	HA8#	HA5#	VSS	VSS	AC
					VCC_CPU	VSS	HA13#	HA17#	VSS	HA7#	VSS	VSS	HREQ3#	HREQ0#	HA4#	АВ
					VSS	VCC_CPU	VSS	HA3#	HREQ2#	VSS	DP2#	DP3#	VSS	DP1#	HREQ1#	AA
VCCA1_2	VSS	VCCA1_2]		VCC_CPU	VSS	HREQ4#	VSS	ADS#	HCCVREF	VCC_CPU	DP0#	DRDY#	VSS	VCC_CPU	Y
VSS	VCC1_2	VSS			VSS	VCC_CPU	CPURST#	DEFER#	VCC_CPU	DBSY#	HITM#	VSS	HTRDY#	VSS	VSS	w
VCC1_2	VSS	VCC1_2			VCC_CPU	VSS	VSS	HXSWNG	HLOCK#	VSS	RS1#	HXRCOMP	VSS	RS0#	BNR#	v
VSS	VCCA CPU1_2	VSS			VSS	VCC_CPU	VSS	VSS	HD59#	BPRI#	VCC_CPU	RS2#	HCLKINN	VSS	HIT#	U
VCC1_2	VSS	VCC1_2			VCC_CPU	VSS	HD60#	HD63#	HDVREF3	HD57#	HD61#	VSS	HD58#	HCLKINP	VCC_CPU	т
VSS	VCC1_2	VSS			VSS	VCC_CPU	VSS	HD47#	HD46#	VSS	HD62#	HDSTB N3#	VCC_CPU	HD56#	VSS	R
VCCAHI 1_2	VSS	VCC1_2			VCC_CPU	VSS	HD42#	VSS	HD44#	HDVREF2	VCC_CPU	HD50#	HDSTBP3#	VSS	DBI3#	Р
-			-		VSS	VCC_CPU	VSS	HDVREF1	HD45#	HD40#	VSS	HD49#	HD54#	HD53#	HD55#	N
					VCC_CPU	VSS	VSS	HD24#	HD31#	VSS	VSS	HD43#	VSS	HD51#	VCC_CPU	м
VCC1_2	VSS	VCC1_2	VSS	VCC1_2	VSS	VCC_CPU	VSS	VSS	HD17#	HD18#	VCC_CPU	DBI2#	HD48#	HD52#	VSS	L
VSS	VCC1_2	VSS	VCC1_2	VSS	VCC1_2	VSS	VCC_CPU	VSS	VCC_CPU	HDSTB N1#	HYSWNG	VSS	HD35#	HD38#	HD39#	к
CLK66	VSS	HI_B15	HI_A8	VSS	HI_A6	HI_A9	VSS	HD14#	HD15#	VSS	HD41#	HDSTBP2#	VSS	HDSTB N2#	HD37#	J
VSS	PSTRBS_B	HI_B16	VSS	HISWNG _A	HIRCOMP _A	VSS	HI_A7	VSS	HD12#	HDSTBP1#	VCC_CPU	HD32#	HD33#	VSS	VCC_CPU	н
HI_B1	PSTRBF_B	VSS	HI_B21	HI_A11	VSS	HI_A2	HIVREF_A	VSS	VSS	HD20#	HYRCOMP	VSS	HD36#	HD34#	VSS	G
HI_C21	VSS	HI_B20	HI_B9	VSS	HI_A10	HI_A3	VSS	DB10#	HD16#	VSS	HD22#	HD26#	VCC_CPU	HD28#	HD30#	F
VCC1_2	HIRCOMP _B	HI_B18	VCC1_2	HI_B13	HI_A0	VCC1_2	HI_A5	HD4#	VCC_CPU	HD19#	VSS	HD23#	HD29#	VSS	HD25#	Е
HI_B0	HI_B7	VSS	HIVREF_B	HI_B12	VSS	PSTRBS_A	HI_A4	VSS	HD11#	HD21#	VCC_CPU	VSS	HD27#	DBI1#	VCC_CPU	D
HI_B3	VSS	HI_B8	HI_B11	VSS	HI_B14	PSTRBF_A	VSS	HD7#	HD10#	VSS	HDVREF0	HD9#	VCC_CPU	HD13#	VSS	с
VSS	HISWNG _B	HI_B6	VSS	PUSTRBS _B	HI_A1	VSS	HD0#	HDSTBP0#	VSS	HDSTB N0#	HD3#	VSS	HD5#	VSS		в
HI_B5	VSS	VCC1_2	HI_B10	PUSTRBF _B	VSS	VCC1_2	HD1#	HD8#	VSS	VCC_CPU	HD6#	HD2#	VSS			A
16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	

Figure 7-2. MCH Ballout (right half of top view)

Figure 7-3. MCH Ballout (top view)

_	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
AN			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			AN
АМ			-	-	-	õ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0		АМ
AL	0	ō																															0	AL
AK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	АК
AJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$^{\circ}$	0	0	0	0	0	0	0	0	0	0	0	0	AJ
АН	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$^{\circ}$	0	0	0	0	0	0	0	0	0	0	0	0	$^{\circ}$	$^{\circ}$	0	0	0	0	АН
AG	0	0	0	0	0	0	0	0	0	0	$^{\circ}$	0	0	0	$^{\circ}$	0	0	0	Ο	0	$^{\circ}$	0	Ο	0	0	0	0	0	$^{\circ}$	0	0	0	0	AG
AF	0	0	0	0	0	0	Ο	0	0	0	0	0	0	0	0	0	0	0	Ο	0	0	0	Ο	0	0	0	0	0	0	0	0	0	0	AF
AE	0	0	0	0	0	0	Ο	Ο	0	0	Ο	0	Ο	0	0	0	Ο	0	Ο	0	0	0	Ο	0	0	0	0	0	0	0	0	0	0	AE
AD	-	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	AD
AC	-	0	-	-	-	-	-	-	-	-	-	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-	-	-		-	-	-	-	AC
AB		0																														0		AB
AA Y	-	0	-	-	-	~	-	-	-	-	-			~	~	~	~	~	~	~			-	-	-	-	-	-	-	-	-	0	-	AA Y
w	-	0	-	-	-	-	-	-	-	-	-			-	-	0	-	-	-	-			-	-	-	-	-	-	-	-	-	0	-	w
v	-	0	-	-	-	-	-	-	-	-	-			-	-	0	-	-	-	-			-	-	-	-	-	-	-	-	-	0	-	v
u		0												-	-	0	-	-	-	-												0		U
т		0														0																0		т
R	-	õ	-	-	-	-	-	-	-	-	-			-	-	0	-	-	-	-			-	-	-	-	-	-	-	-	-	õ	-	R
Р		0												-	-	õ	-	-	-	-												õ		Р
N		õ												Ŭ	Ŭ		~	Ŭ	~	Ŭ												õ		N
м	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō												Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	ō	Ō	Ō	м
L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	L
к	0	0	0	0	0	0	$^{\circ}$	0	0	0	$^{\circ}$	0	0	0	0	0	0	0	0	0	$^{\circ}$	0	0	0	0	0	0	$^{\circ}$	0	0	0	0	0	к
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$^{\circ}$	0	0	0	0	0	$^{\circ}$	$^{\circ}$	0	0	0	0	0	$^{\circ}$	0	0	0	$^{\circ}$	0	J
н	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ο	0	0	0	0	0	0	0	0	0	0	н
G	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G
F	-	0	-	-		-	-		-		-	-	-	-	-		-		-	-	-	-		-	-	-		-		-	-	-	-	F
E		0																																E
D		0																																D
с в	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	СВ
A		0				0	-			-	-				-											-	-	-				Ο	1	A
Î				0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0		0	0	0	0	0	0			0	0			
	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	

Table 7-1. Ballout by Signal Name

Table 7-1. Ballout by Signal Name

Table 7-1. Ballout by Signal Name

Ball # AN28 AE21 AH22 AN29 AM28 AL26 AL25 AN25 AM24 AG21 AE20 AM25 AK24 AL22 AJ22 AK19 AL19 AN17 AF18 AN20 AM19 AL17 AJ18 AF19 AH19 AM21 AL20 AH20 AJ21 AN21 AJ19 AL14 AM13 AJ15 AF15 AK14 AN13 AH14 AG14 AE14 AH13 AN12 AL11 AE15

Signal Name							
Signal Name Ball #							
ADS#	Y7						
AP0#	AJ6						
AP1#	AK5						
BA_A0	AL31						
BA_A1	AH23						
BA_B0	K26						
BA_B1	H27						
BINIT#	AG8						
BNR#	V1						
BPRI#	U6						
BREQ0#	AF9						
CAS_A#	AE22						
CAS_B#	H28						
CB_A0	AE16						
CB_A1	AH16						
CB_A2	AL16						
CB_A3	AK15						
CB_A4	AE17						
 CB_A5	AG17						
CB_A6	AM15						
CB_A7	AG15						
CB_B0	V28						
CB_B1	U25						
CB B2	Y31						
CB_B3	AA33						
CB_B4	U28						
CB_B5	U27						
CB_B6	AA31						
CB_B7	AA32						
 CKE_A	AE19						
 CKE_B	M32						
 CLK66	J16						
CMDCLK_A0	AG24						
CMDCLK_A0#	AG23						
CMDCLK_A1	AJ25						
CMDCLK A1#	AH25						
CMDCLK_A2	AG26						
CMDCLK A2#	AF25						
CMDCLK_A3	AE25						
CMDCLK_A3#	AE24						
CMDCLK B0	J29						
CMDCLK_B0#	J28						
CMDCLK_B1	L28						
CMDCLK B1#	M28						
<u>-</u>							

Signal N	lame	Signa
Signal Name	Ball #	Signal Name
CMDCLK_B2	J26	DQ_A1
CMDCLK_B2#	K25	DQ_A2
CMDCLK_B3	K27	DQ_A3
CMDCLK_B3#	L27	DQ_A4
CPURST#	W9	DQ_A5
CS_A0#	AE13	DQ_A6
CS_A1#	AK11	DQ_A7
CS_A2#	AL10	DQ_A8
CS_A3#	AH8	DQ_A9
CS_A4#	AN8	DQ_A10
CS_A5#	AK7	DQ_A11
CS_A6#	AL3	DQ_A12
CS_A7#	AL2	DQ_A13
CS_B0#	AH29	DQ_A14
CS_B1#	AK32	DQ_A15
CS_B2#	AF30	DQ_A16
CS_B3#	AF27	DQ_A17
CS_B4#	AE31	DQ_A18
CS_B5#	AE26	DQ_A19
CS_B6#	AD28	DQ_A20
CS_B7#	Y27	DQ_A21
DBI0#	F8	DQ_A22
DBI1#	D2	DQ_A23
DBI2#	L4	DQ_A24
DBI3#	P1	DQ_A25
DBSY#	W6	DQ_A26
DDRCOMP_A	AH17	DQ_A27
DDRCOMP_B	W30	DQ_A28
DDRCVO_A	AK17	DQ_A29
DDRCVO_B	W32	DQ_A30
DDRVREF_A0	AJ7	DQ_A31
DDRVREF_A1	AL9	DQ_A32
DDRVREF_A2	AM16	DQ_A33
DDRVREF_A3	AK21	DQ_A34
DDRVREF_B0	AC25	DQ_A35
DDRVREF_B1	AG32	DQ_A36
DDRVREF_B2	U26	DQ_A37
DDRVREF_B3	N33	DQ_A38
DEFER#	W8	DQ_A39
DP0#	Y4	DQ_A40
DP1#	AA2	DQ_A41
DP2#	AA5	DQ_A42
DP3#	AA4	DQ_A43
DQ_A0	AF22	DQ_A44
L		

Table 7-1. Ballout by Signal Name

Signal Na	ime
Signal Name	Ball #
DQ_A45	AF13
DQ_A46	AJ12
DQ_A47	AM10
DQ_A48	AE12
DQ_A49	AH11
DQ_A50	AG11
DQ_A51	AN5
DQ_A52	AG12
DQ_A53	AF12
DQ_A54	AM9
DQ_A55	AM6
DQ_A56	AG10
DQ_A57	AJ9
DQ_A58	AM3
DQ_A59	AM2
DQ_A60	AH10
DQ_A61	AE11
DQ_A62	AL5
DQ_A63	AM4
DQ_B0	F33
DQ_B1	K30
DQ_B2	J32
DQ_B3	N25
DQ_B4	N27
DQ_B5	G32
DQ_B6	M29
DQ_B7	N26
DQ_B8	J33
DQ_B9	K32
DQ_B10	P27
DQ_B11	P25
DQ_B12	J31
DQ_B13	L31
DQ_B14	P26
DQ_B15	P28
DQ_B16	T29
DQ_B17	T30
 DQ_B18	U30
DQ_B19	T26
 DQ_B20	R32
DQ_B21	T27
DQ B22	V33
DQ B23	V31
DQ B24	P30

Table 7-1. Ballout by Signal Name

Signal Name	Ball #	
DQ_B25	P33	DQS
DQ_B26	R26	DQS
DQ_B27	T32	DQS
DQ_B28	N32	DQS
DQ_B29	P31	DQS
DQ_B30	R28	DQS
DQ_B31	T25	DQS
DQ_B32	W27	DQS
DQ_B33	AE33	DQS
DQ_B34	AF31	DQS
DQ_B35	W25	DQS
DQ_B36	AA28	DQS
DQ_B37	AD32	DQS
DQ_B38	AG33	DQS
DQ_B39	W26	DQS
DQ_B40	AA29	DQS
DQ_B41	AB33	DQS
DQ_B42	V26	DQS
DQ_B43	AD31	DQS
DQ_B44	Y28	DQS
DQ_B45	AB32	DQS
DQ_B46	AB29	DQS
DQ_B47	V25	DQS
DQ_B48	Y25	DQS
DQ_B49	AB27	DQS
DQ_B50	AH32	DQS
DQ_B51	AH31	DQS
DQ_B52	AC28	DQS
DQ_B53	AA26	DQS
DQ_B54	AG30	DQS
DQ_B55	AH33	DQS
DQ_B56	AJ30	DRE
DQ_B57	AG29	HA3
DQ_B58	AB25	HA4
DQ_B59	AA25	HA5
DQ_B60	AL32	HA6
DQ_B61	AJ31	HA7
DQ_B62	AC27	HA8
DQ_B63	AB26	HA9
DQS_A0	AM27	HA1
DQS_A1	AL23	HA1
DQS_A2	AG18	HA1
DQS_A3	AE18	HA1
DQS_A4	AL13	HA1

Table 7-1. Ballout by Signal Name

Signal Name	Ball #
DQS_A5	AM12
DQS_A6	AL8
DQS_A7	AL6
DQS_A8	AJ16
DQS_A9	AF21
DQS_A10	AK23
DQS_A11	AK18
DQS_A12	AK20
DQS_A13	AJ13
DQS_A14	AK12
DQS_A15	AM7
DQS_A16	AH9
DQS_A17	AF16
DQS_B0	L30
DQS_B1	M31
DQS_B2	U33
DQS_B3	R29
DQS_B4	AE32
DQS_B5	AC31
DQS_B6	AE28
DQS_B7	AE27
DQS_B8	W29
DQS_B9	H31
DQS_B10	N29
DQS_B11	U31
DQS_B12	R31
DQS_B13	AC30
DQS_B14	AB30
DQS_B15	AD27
DQS_B16	AF28
DQS_B17	Y30
DRDY#	Y3
HA3#	AA8
HA4#	AB1
HA5#	AC3
HA6#	AD2
HA7#	AB6
HA8#	AC4
HA9#	AD4
HA10#	AE5
HA11#	AE2
HA12#	AC6
HA13#	AB9
HA14#	AE6

Table 7-1. Ballout by Signal Name

Table 7-1. Ballout by Signal Name

Table 7-1. Ballout by Signal Name

Ball # Т9 T5 R5 Τ8 B6 K6 J2 R4 B8 H6 J4 P3 C5 N8 P6 T7 E11 B11 G10 F10 D9 E9 J11 H9 J13 J10 F11 G12 D16 G16 C17 C16 A17 A16 B14 D15 C14 F13 A13 C13 D12 E12 C11 J14

Signal Name		
Signal Name	Ball #	
HA15#	AE3	
HA16#	AD5	
HA17#	AB8	
HA18#	AC7	
HA19#	AC9	
HA20#	AH2	
HA21#	AH3	
HA22#	AG2	
HA23#	AF6	
HA24#	AD8	
HA25#	AF1	
HA26#	AG4	
HA27#	AJ4	
HA28#	AE8	
HA29#	AF3	
HA30#	AF7	
HA31#	AH5	
HA32#	AG7	
HA33#	AH6	
HA34#	AJ1	
HA35#	AG5	
HADSTB0#	AE1	
HADSTB1#	AD7	
HAVREF0	AF4	
HAVREF1	AJ3	
HCCVREF	Y6	
HCLKINN	U3	
HCLKINP	T2	
HD0#	B9	
HD1#	A9	
HD2#	A4	
HD3#	B5	
HD4#	E8	
HD5#	B3	
HD6#	A5	
HD7#	C8	
HD8#	A8	
HD9#	C4	
HD10#	C7	
HD11#	D7	
HD12#	H7	
HD13#	C2	
HD14#	J8	
HD15#	J7	

Signal N	ame	Signal N
Signal Name	Ball #	Signal Name
HD16#	F7	HD60#
HD17#	L7	HD61#
HD18#	L6	HD62#
HD19#	E6	HD63#
HD20#	G6	HDSTBN0#
HD21#	D6	HDSTBN1#
HD22#	F5	HDSTBN2#
HD23#	E4	HDSTBN3#
HD24#	M8	HDSTBP0#
HD25#	E1	HDSTBP1#
HD26#	F4	HDSTBP2#
HD27#	D3	HDSTBP3#
HD28#	F2	HDVREF0
HD29#	E3	HDVREF1
HD30#	F1	HDVREF2
HD31#	M7	HDVREF3
HD32#	H4	HI_A0
HD33#	H3	HI_A1
HD34#	G2	HI_A2
HD35#	K3	HI_A3
HD36#	G3	HI_A4
HD37#	J1	HI_A5
HD38#	K2	HI_A6
HD39#	K1	HI_A7
HD40#	N6	HI_A8
HD41#	J5	HI_A9
HD42#	P9	HI_A10
HD43#	M4	HI_A11
HD44#	P7	HI_B0
HD45#	N7	HI_B1
HD46#	R7	HI_B2
HD47#	R8	HI_B3
HD48#	L3	HI_B4
HD49#	N4	HI_B5
HD50#	P4	HI_B6
HD51#	M2	HI_B7
HD52#	L2	HI_B8
HD53#	N2	HI_B9
HD54#	N3	HI_B10
HD55#	N1	HI_B11
HD56#	R2	HI_B12
HD57#	Т6	HI_B13
HD58#	T3	HI_B14
HD59#	U7	HI_B15

Table 7-1. Ballout by Signal Name

Signal I	Name	
Signal Name	Ball #	
HI_B16	H14	Н
HI_B17	B17	H
HI_B18	E14	H
HI_B20	F14	H
HI_B21	G13	H
HI_C0	D22	Н
HI_C1	B24	H
HI_C2	G18	H
HI_C3	C22	H
HI_C4	E20	H
HI_C5	F19	H
HI_C6	D21	H
HI_C7	E21	H
HI_C8	D19	Н
HI_C9	A20	H
HI_C10	B20	H
HI_C11	C19	H
HI_C12	B18	HI
HI_C13	C18	H
HI_C14	E18	H
HI_C15	F17	H
HI_C16	B21	H
HI_C17	C24	H
HI_C18	F20	H
HI_C20	H18	H)
HI_C21	F16	H)
HI_D0	D28	H
HI_D1	G25	H
HI_D2	G26	M
HI_D3	F26	M
HI_D4	G24	M
HI_D5	A27	M
HI_D6	H24	M
HI_D7	C26	M
HI_D8	G22	M
HI_D9	E24	M
HI_D10	A25	M
HI_D11	D24	M
HI_D12	A24	M
HI_D13	E23	M
HI_D14	F23	M
HI_D15	F22	M
HI_D16	H23	M
HI_D17	H25	M
		L.,

Table 7-1. Ballout by Signal Name

Signal N	lame	
Signal Name	Ball #	
H_D18	F25	Μ
H_D20	E27	Μ
H_D21	H21	Μ
HRCOMP_A	H11	Μ
HRCOMP_B	E15	М
HRCOMP_C	C20	Μ
HRCOMP_D	G21	М
HSWNG_A	H12	Μ
HSWNG_B	B15	М
HSWNG_C	H17	М
HSWNG_D	F24	Ν
HT#	U1	Ν
HTM#	W5	Ν
HVREF_A	G9	Ν
HVREF_B	D13	0
HVREF_C	A21	P
HVREF_D	J22	P
ILOCK#	V7	P
IREQ0#	AB2	P
IREQ1#	AA1	P
IREQ2#	AA7	P
IREQ3#	AB3	P
IREQ4#	Y9	P
ITRDY#	W3	Ρ
IXRCOMP	V4	Р
IXSWNG	V8	Р
IYRCOMP	G5	Ρ
IYSWNG	K5	Ρ
/IA_A0	AF24	Ρ
/IA_A1	AK26	P
/IA_A2	AH26	R
/IA_A3	AJ27	R
/IA_A4	AG27	R
/IA_A5	AH28	R
/IA_A6	AL28	R
/IA_A7	AL29	R
/IA_A8	AK29	R
/IA_A9	AM30	R
/IA_A10	AJ24	R
/IA_A11	AK30	R
/IA_A12	AM31	R
/A_B0	M26	R
/IA_B1	K29	R
/IA_B2	H30	R

Signal Name	Ball #
MA_B3	G30
MA_B4	F32
MA_B5	G29
MA_B6	F31
MA_B7	E33
MA_B8	E31
MA_B9	F29
MA_B10	L25
MA_B11	C31
MA_B12	C32
NC	AN16
NC	V29
NC	AM22
NC	N30
ODTCOMP	AJ28
PSTRBF_A	C10
PSTRBS_A	D10
PSTRBF_B	G15
PSTRBS_B	H15
PSTRBF_C	C23
PSTRBS_C	B23
PSTRBF_D	D27
PSTRBS_D	D26
PUSTRBF_B	A12
PUSTRBS_B	B12
PUSTRBF_C	D18
PUSTRBS_C	E17
PUSTRBF_D	B25
PUSTRBS_D	C25
PWRGOOD	A28
RAS_A#	AN24
RAS_B#	V32
RCVEN_A	AG20
RCVEN_B	R25
Reserved	AK27
Reserved	M25
Reserved	E30
Reserved	B30
Reserved	AM18
Reserved	K33
Reserved	D29
RS0#	V2
RS1#	V5

Table 7-1. Ballout by Signal Name

Table 7-1. Ballout by Signal Name

Signal Name		
Signal Name Ball #		
RSP#	AK4	
RSTIN#	E28	
SMB_CLK	J25	
SMB_DATA	B31	
VCC_CPU	AC5	
VCC_CPU	AG3	
VCC_CPU	AJ5	
VCC_CPU	AF5	
VCC_CPU	AH1	
VCC_CPU	K7	
VCC_CPU	F3	
VCC_CPU	P5	
VCC_CPU	R3	
VCC_CPU	W7	
VCC_CPU	H5	
VCC_CPU	L5	
VCC_CPU	U5	
VCC_CPU	Y5	
VCC_CPU	AE7	
VCC_CPU	K9	
VCC_CPU	AD1	
VCC_CPU	D1	
VCC_CPU	H1	
VCC_CPU	M1	
VCC_CPU	T1	
VCC_CPU	Y1	
VCC_CPU	A6	
VCC_CPU	E7	
VCC_CPU	AA10	
VCC_CPU	AB11	
VCC_CPU	AC10	
VCC_CPU	C3	
VCC_CPU	D5	
VCC_CPU	L10	
VCC_CPU	M11	
VCC_CPU	N10	
VCC_CPU	P11	
VCC_CPU	R10	
VCC_CPU	T11	
VCC_CPU	U10	
VCC_CPU	V11	
VCC_CPU	W10	
VCC_CPU	Y11	
VCC1_2	L18	
•	·	

Signal Name		
Signal Name	Ball #	Sign
VCC1_2	L20	VCC2_5
VCC1_2	L22	VCC2_5
VCC1_2	B28	VCC2_5
VCC1_2	H20	VCC2_5
VCC1_2	A10	VCC2_5
VCC1_2	A14	VCC2_5
VCC1_2	A18	VCC2_5
VCC1_2	A22	VCC2_5
VCC1_2	E10	VCC2_5
VCC1_2	E13	VCC2_5
VCC1_2	E16	VCC2_5
VCC1_2	E19	VCC2_5
VCC1_2	E22	VCC2_5
VCC1_2	K13	VCC2_5
VCC1_2	K15	VCC2_5
VCC1_2	K17	VCC2_5
VCC1_2	K19	VCC2_5
VCC1_2	K21	VCC2_5
VCC1_2	K23	VCC2_5
VCC1_2	P14	VCC2_5
VCC1_2	P18	VCC2_5
VCC1_2	R17	VCC2_5
VCC1_2	R19	VCC2_5
VCC1_2	T14	VCC2_5
VCC1_2	T16	VCC2_5
VCC1_2	T18	VCC2_5
VCC1_2	U17	VCC2_5
VCC1_2	U19	VCC2_5
VCC1_2	V16	VCC2_5
VCC1_2	V18	VCC2_5
VCC1_2	W15	VCC2_5
VCC1_2	W17	VCC2_5
VCC1_2	W19	VCC2_5
VCC1_2	A26	VCC2_5
VCC1_2	A30	VCC2_5
VCC1_2	R15	VCC2_5
VCC1_2	V14	VCC2_5
VCC1_2	E26	VCC2_5
VCC1_2	H19	VCC2_5
VCC1_2	K11	VCC2_5
VCC1_2	L12	VCC2_5
VCC1_2	L14	VCC2_5
VCC1_2	L16	VCC2_5
VCC2_5	R23	VCC2_5

Signal Name		
Signal Name	Ball #	
VCC2_5	AN4	
VCC2_5	AN7	
VCC2_5	AA23	
VCC2_5	AC13	
VCC2_5	AC15	
VCC2_5	AC17	
VCC2_5	AC19	
VCC2_5	U23	
VCC2 5	W23	
VCC2_5	AB24	
VCC2_5	AD12	
VCC2 5	AD14	
VCC2 5	AD16	
VCC2_5	AD18	
VCC2_5	AD20	
VCC2_5	AD25	
VCC2 5	AD29	
VCC2 5	AD33	
VCC2_5	AE10	
VCC2_5	AE30	
VCC2 5	AF33	
VCC2_5	AJ11	
VCC2 5	AJ14	
VCC2 5	AJ17	
VCC2 5	AJ20	
VCC2 5	AJ23	
VCC2 5	AK33	
VCC2_5	AN10	
VCC2 5	AN14	
VCC2 5	AN14 AN18	
VCC2_5	AN10 AN22	
VCC2 5	AN22 AN26	
VCC2_5	H33	
VCC2_5	L29	
VCC2_5	M33	
VCC2_5	P24	
VCC2_5	P29	
VCC2_5	T24	
VCC2_5	T33	
VCC2_5	U29	
VCC2_5	V24	
VCC2_5	V24 Y24	
VCC2_5	Y29	
VCC2_5 VCC2_5		
v002_0	Y33	

Table 7-1. Ballout by

Table 7-1. Ballout by Signal Name

Signal I		Table
Signal Name	Ball #	S
VCC2_5	AA27	VSS
VCC2_5	AG13	VSS
VCC2_5	AG19	VSS
VCC2_5	AG22	VSS
VCC2_5	AK10	VSS
VCC2_5	AK8	VSS
VCC2_5	AL1	VSS
VCC2_5	AL15	VSS
VCC2_5	AL24	VSS
VCC2_5	G27	VSS
VCC2_5	AC21	VSS
VCC2_5	AC23	VSS
VCC2_5	L23	VSS
VCC2_5	N23	VSS
VCC2_5	AD22	VSS
VCC2_5	AD24	VSS
VCC2_5	AJ26	VSS
VCC2_5	AJ29	VSS
VCC2_5	AN30	VSS
VCC2_5	D33	VSS
VCC2_5	E29	VSS
VCC2_5	H29	VSS
VCC2_5	K24	VSS
VCC2_5	M24	VSS
VCC2_5	AF23	VSS
VCC2_5	AG28	VSS
VCC2_5	AM32	VSS
VCC2_5	B32	VSS
VCC2_5	L26	VSS
VCC2_5	AB31	VSS
VCC2_5	K31	VSS
VCC2_5	T31	VSS
VCCA1_2	P20	VSS
VCCA1_2	T20	VSS
VCCA1_2	V20	VSS
VCCA1_2	Y14	VSS
VCCA1_2	Y16	VSS
VCCA1_2	Y18	VSS
VCCA1_2	Y20	VSS
VCCACPU1_2	U15	VSS
VCCAHI1_2	P16	VSS
VSS	AD11	VSS
VSS	AD13	VSS
VSS	AD15	VSS

Signal Name			
Signal Name	Ball #	Si	
S	AD17	VSS	
S	AD19	VSS	
S	AD21	VSS	
S	AD23	VSS	
S	AD26	VSS	
S	AD30	VSS	
S	AE29	VSS	
S	AE9	VSS	
S	AF10	VSS	
S	AF11	VSS	
S	AF14	VSS	
S	AF17	VSS	
S	AF20	VSS	
S	AF26	VSS	
S	AF29	VSS	
S	AF32	VSS	
S	AG16	VSS	
S	AG25	VSS	
S	AG31	VSS	
S	AH12	VSS	
S	AH15	VSS	
S	AH18	VSS	
S	AH21	VSS	
S	AH24	VSS	
S	AH27	VSS	
S	AH30	VSS	
S	AJ32	VSS	
S	AJ33	VSS	
S	AK13	VSS	
S	AK16	VSS	
S	AK22	VSS	
S	AK25	VSS	
S	AK28	VSS	
s s	AK31	VSS	
	AL12	VSS	
S	AL18	VSS	
S S	AL21	VSS	
S	AL27	VSS	
S	AL30	VSS	
S	AL33	VSS	
S	AM11	VSS	
S	AM14	VSS	
S	AM17	VSS	
S	AM20	VSS	

Signal Name		
Signal Name	Ball #	
VSS	AM23	
VSS	AM26	
VSS	AM29	
VSS	AN11	
VSS	AK9	
VSS	AM8	
VSS	AC8	
VSS	G7	
VSS	D30	
VSS	AF8	
VSS	AA9	
VSS	J6	
VSS	V3	
VSS	F28	
VSS	AG6	
VSS	AH7	
VSS	AH4	
VSS	AN15	
VSS	AN19	
VSS	AN23	
VSS	AN27	
VSS	AN3	
VSS	AN31	
VSS	AN6	
VSS	B10	
VSS	B13	
VSS	B16	
VSS	B19	
VSS	B10 B22	
VSS	B26	
VSS	B29	
VSS	B23	
VSS	B7	
VSS	C1	
VSS	C12	
VSS	C15	
VSS	C21	
VSS	C21	
VSS	C27	
VSS	C30	
VSS	C33	
VSS	C8 C9	
VSS	D11	
VSS	D11	
v00	014	

Table 7-1. Ballout by Signal Name

Table 7-1. Ballout by Signal Name

Signal Name		
Signal Name	Ball #	
VSS	D17	
VSS	D20	
VSS	D23	
VSS	D31	
VSS	D8	
VSS	E25	
VSS	E32	
VSS	F12	
VSS	F15	
VSS	F18	
VSS	F21	
VSS	F27	
VSS	F30	
VSS	F6	
VSS	F9	
VSS	G1	
VSS	G11	
VSS	G14	
VSS	G17	
VSS	G20	
VSS	G23	
VSS	G28	
VSS	G31	
VSS	G33	
VSS	AL4	
VSS	AJ2	
VSS	AK3	
VSS	AD6	
VSS	AK6	
VSS	AL7	
VSS	AM5	
VSS	AF2	
VSS	AD3	
VSS	AG1	
VSS	AK1	
VSS	U9	
VSS	E2	
VSS	H2	
VSS	K4	
VSS	J3	
VSS	K8	
VSS	L8	
VSS	G4	
VSS	M6	

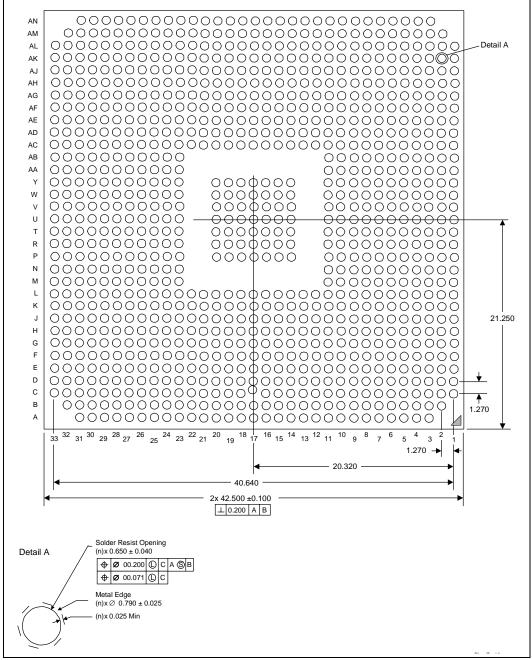
Signal Name		
Signal Name	Ball #	Signa
VSS	P2	VSS
VSS	M3	VSS
VSS	M9	VSS
VSS	P8	VSS
VSS	N9	VSS
VSS	U2	VSS
VSS	R6	VSS
VSS	T4	VSS
VSS	V6	VSS
VSS	W4	VSS
VSS	W2	VSS
VSS	Y2	VSS
VSS	AA3	VSS
VSS	AA6	VSS
VSS	Y8	VSS
VSS	J19	VSS
VSS	J20	VSS
VSS	G19	VSS
VSS	E5	VSS
VSS	J23	VSS
VSS	AB5	VSS
VSS	D4	VSS
VSS	AE4	VSS
VSS	AC2	VSS
VSS	AG9	VSS
VSS	L9	VSS
VSS	C28	VSS
VSS	B27	VSS
VSS	AB4	VSS
VSS	AB7	VSS
VSS	AD9	VSS
VSS	G8	VSS
VSS	H10	VSS
VSS	H13	VSS
VSS	H16	VSS
VSS	H22	VSS
VSS	H26	VSS
VSS	H32	VSS
VSS	H8	VSS
VSS	J12	VSS
VSS	J15	VSS
VSS	J18	VSS
VSS	J21	VSS
VSS	J24	VSS

Signal Name	Ball #
VSS	J27
VSS	J30
VSS	J9
VSS	K12
VSS	K14
VSS	K16
VSS	K18
VSS	K20
VSS	K22
VSS	K28
VSS	L1
VSS	L24
VSS	L32
VSS	L33
VSS	M23
VSS	M27
VSS	M30
VSS	N5
VSS	N24
VSS	N28
VSS	N31
VSS	P15
VSS	P17
VSS	P19
VSS	P23
VSS	P32
VSS	R1
VSS	R14
VSS	R18
VSS	R20
VSS	R24
VSS	R27
VSS	R30
VSS	R33
VSS	R9
VSS	T15
VSS	T10
VSS	T19
VSS	AA11
VSS	AB10
VSS	AD10
VSS	AD10
VSS	AD10 AN9
VSS	M10
100	WI U

Table 7-1. Ballout by Signal Name

Table 7-1. Ballout by Signal Name

Ball # A3 A31 A7 AA24 AA30 AB23 AB28 AC1 AC12 AC14 AC16 AC18 AC20 AC22 AC24 AC26 AC32 AC33 T23 T28 U14 U16 U18 U20 U24 U32 U8

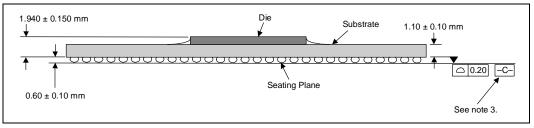

Ball # M5	Signal Name
M5	
	VSS
N11	VSS
P10	VSS
R11	VSS
T10	VSS
U11	VSS
V10	VSS
W11	VSS
Y10	VSS
B2	VSS
J17	VSS
K10	VSS
L11	VSS
L13	VSS
L15	VSS
L17	VSS
L19	VSS
L21	VSS
R16	VSS
AC29	VSS
AJ10	VSS
D25	VSS
A11	VSS
A15	VSS
A19	VSS
A23	VSS
A29	VSS
	R11 T10 U11 V10 W11 Y10 B2 J17 K10 L11 L13 L15 L17 L19 L21 R16 AC29 AJ10 D25 A11 A15 A19 A23

Signal Name	Ball #
VSS	V15
VSS	V17
VSS	V19
VSS	V23
VSS	V27
VSS	V30
VSS	V9
VSS	W1
VSS	W14
VSS	W16
VSS	W18
VSS	W20
VSS	W24
VSS	W28
VSS	W31
VSS	W33
VSS	Y15
VSS	Y17
VSS	Y19
VSS	Y23
VSS	Y26
VSS	Y32
VSS	AJ8
WE_A#	AE23
WE_B#	D32
XERR#	AK2
XORMODE#	C29

7.2 Package Specifications

Figure 7-4 and Figure 7-5 provide the package specifications for the MCH.

Figure 7-4. MCH Package Dimensions (Top View)



NOTE:

1. All dimensions are in millimeters.

2. All dimensions and tolerances conform to ANSI Y14.5M-1982.

Figure 7-5. MCH Package Dimensions (Side View)

NOTES:

- 1. All dimensions are in millimeters.
- Substrate thickness and package overall height are thicker than standard 492-L-PBGA
 Primary datum —C— and seating plane are defined by the spherical crowns of the solder balls.
 All dimensions and tolerances conform to ANSI Y14.5M-1982.

7.3 Chipset Interface Trace Length Compensation

In this section, detailed information is given about the internal component package trace lengths to enable trace length compensation. Trace length compensation is required for platform design. These lengths must be considered when matching trace lengths as described in the *Intel*[®] *Xeon*TM *Processor and Intel*[®] *E7500 / E7501 Chipset Compatible Platform Design Guide* or *Intel*[®] *Pentium*[®] *M Processor and Intel*[®] *E7501 Chipset Platform Design Guide*. Note that these lengths represent the actual lengths from pad to ball.

Note: Different length matching requirements must be followed for each platform interface. These guidelines are specified in the corresponding sections of the platform design guide. Use of the Length Matching Spreadsheet is recommended to provide lengths for major interfaces. Contact your Intel representative for information about the Length Matching Spreadsheet tool.

The data given can be normalized from a particular reference ball to simplify routing. If the longest trace is used as the reference for normalization, use the following equation:

Equation 7-1.

$$\Delta L_{PKG} = L_{REF} - L_{PKG}$$

- L_{REF} is the nominal package length of the reference signal used for normalization.
- ÄL_{PKG} is the nominal Ä package trace length of the MCH from the reference trace.

To calculate the ÄL_{PCB} for signals from the MCH to the device, use the following formula.

Equation 7-2.

$$\Delta L_{PCB} = \frac{\Delta L_{PKG} \times V_{PKG}}{V_{PCB}}$$

- ÄL_{PCB} is the nominal Ä PCB trace length to be added on the PCB.
- ÄL_{PKG} is the nominal Ä package trace length of the MCH (refer to Equation 1).
- V_{PKG} is the MCH package trace delay due to signal velocity. The nominal value is 150 ps/in.
- V_{PCB} is the PCB trace delay due to signal velocity. The nominal value is 175 ps/in on the recommended stackup.

Note: Use care when converting delays and velocities (*x* ps/in is a delay, *y* in/ps is a velocity).

Table 7-2 shows example values when signal MEMORY1 trace length is used for normalization.

Table 7-2. Example Normalization Table

	L _{PKG} (mils)	∆L _{PKG} (mils)	∆L _{PCB} (mils)	Target L _{PCB} (mils)
MEMORY1	175.984	0.000	0.000	3500.000
MEMORY2	152.364	23.620	20.246	3520.246
MEMORY3	130.315	45.669	39.145	3539.145
MEMORY4	118.897	57.087	48.932	3548.932
MEMORYN	102.756	73.228	62.767	3562.767

7.3.1 System Bus Signal Package Trace Length Data

Table 7-3 provides the MCH package trace length information for the system bus.

Table 7-3. MCH L_{PKG} Data for the System Bus (Sheet 1 of 2)

Signal	Ball No.	L _{PKG} (mils)
HADSTB0#	AE1	796.57
HA3#	AA8	292.76
HA4#	AB1	690.67
HA5#	AC3	600.79
HA6#	AD2	760.04
HA7#	AB6	470.04
HA8#	AC4	567.56
HA9#	AD4	630.00
HA10#	AE5	610.71
HA11#	AE2	780.51
HA12#	AC6	472.52
HA13#	AB9	574.64
HA14#	AE6	575.24
HA15#	AE3	701.14
HA16#	AD5	511.42
HREQ0#	AB2	662.09
HREQ1#	AA1	683.38
HREQ2#	AA7	394.37
HREQ3#	AB3	588.07
HREQ4#	Y9	304.88
HADSTB1#	AD7	431.81
HA17#	AB8	331.34
HA18#	AC7	389.09
HA19#	AC9	376.22
HA20#	AH2	859.09
HA21#	AH3	730.63
HA22#	AG2	770.71
HA23#	AF6	566.30
HA24#	AD8	400.12
HA25#	AF1	797.05
HA26#	AG4	689.29
HA27#	AJ4	693.94
HA28#	AE8	411.61

of 2)		
Signal	Ball No.	L _{PKG} (mils)
HDSTBN0#	B6	841.53
HDSTBP0#	B8	738.27
HD0#	B9	680.98
HD1#	A9	774.60
HD2#	A4	953.78
HD3#	B5	931.65
HD4#	E8	645.47
HD5#	B3	1042.71
HD6#	A5	929.45
HD7#	C8	732.32
HD8#	A8	762.12
HD9#	C4	907.68
HD10#	C7	777.68
HD11#	D7	763.38
HD12#	H7	534.25
HD13#	C2	1058.50
HD14#	J8	398.54
HD15#	J7	456.26
DBI0#	F8	592.64
HDSTBN1#	K6	478.90
HDSTBP1#	H6	560.94
HD16#	F7	616.26
HD17#	L7	377.52
HD18#	L6	448.58
HD19#	E6	761.18
HD20#	G6	678.78
HD21#	D6	770.27
HD22#	F5	808.23
HD23#	E4	858.23
HD24#	M8	331.30

1028.78

850.08

891.18

E1

F4

D3

HD25#

HD26#

HD27#

Signal	Ball No.	L _{PKG} (mils)
HA29#	AF3	734.64
HA30#	AF7	519.96
HA31#	AH5	618.27
HA32#	AG7	495.90
HA33#	AH6	600.27
HA34#	AJ1	876.45
HA35#	AG5	610.31

Signal	Ball No.	L _{PKG} (mils)
HD28#	F2	943.62
HD29#	E3	903.70
HD30#	F1	1029.53
HD31#	M7	397.13
DBI1#	D2	980.27

HCLKINN	U3	630.08
HCLKINP	T2	630.04

HDSTBN2#	J2	781.73
HDSTBP2#	J4	717.52
HD32#	H4	714.01
HD33#	H3	801.57
HD34#	G2	863.82
HD35#	К3	722.32
HD36#	G3	816.85
HD37#	J1	802.09
HD38#	K2	738.82
HD39#	K1	820.08
HD40#	N6	415.98
HD41#	J5	723.82
HD42#	P9	306.10
HD43#	M4	619.25
HD44#	P7	369.96
HD45#	N7	347.91
HD46#	R7	332.16
HD47#	R8	308.74
DBI2#	L4	648.23

HDSTBN3#	R4	526.02
HDSTBP3#	P3	602.32
HD48#	L3	667.95
HD49#	N4	596.10
HD50#	P4	581.42
HD51#	M2	719.53
HD52#	L2	727.72
HD53#	N2	704.09
HD54#	N3	602.52
HD55#	N1	758.58
HD56#	R2	610.04
HD57#	Т6	530.87
HD58#	Т3	576.81
HD59#	U7	364.17
HD60#	Т9	268.07
HD61#	T5	475.79
HD62#	R5	448.07
HD63#	Т8	309.49
DBI3#	P1	685.35

7.3.2 MCH DDR Channel A Signal Package Trace Length Data

Table 7-4 provides the MCH package trace length information for channel A of the DDR memory interface.

Ball No.	L _{PKG} (mils)
AM27	816.53
AF21	417.05
AF22	388.74
AN28	900.90
AE21	391.50
AH22	599.96
AN29	907.40
AM28	862.71
AL26	747.52
AL25	682.99
	AM27 AF21 AF22 AN28 AE21 AH22 AN29 AM28 AL26

Table 7-4. MCH L_{PKG} Data for DDR Channel A (Sheet 1 of 2)

Signal	Ball No.	L _{PKG} (mils)
DQS_A2	AG18	356.06
DQS_A11	AK18	567.48
DQ_A16	AK19	534.01
DQ_A17	AL19	607.28
DQ_A18	AN17	697.83
DQ_A19	AF18	332.32
DQ_A20	AN20	690.51
DQ_A21	AM19	624.96
DQ_A22	AL17	617.05
DQ_A23	AJ18	450.63

DQS_A1	AL23	634.49
DQS_A10	AK23	579.13
DQ_A8	AN25	813.07
DQ_A9	AM24	730.86
DQ_A10	AG21	413.15
DQ_A11	AE20	345.79
DQ_A12	AM25	752.40
DQ_A13	AK24	616.53
DQ_A14	AL22	599.92
DQ_A15	AJ22	485.83

DQS_A3	AE18	375.51
DQS_A12	AK20	591.14
DQ_A24	AF19	395.00
DQ_A25	AH19	516.81
DQ_A26	AM21	747.52
DQ_A27	AL20	666.30
DQ_A28	AH20	535.43
DQ_A29	AJ21	630.27
DQ_A30	AN21	813.58
DQ_A31	AJ19	529.21

DQS_A4	AL13	617.09
DQS_A13	AJ13	544.53
DQ_A32	AL14	627.09
DQ_A33	AM13	687.40
DQ_A34	AJ15	559.80
DQ_A35	AF15	405.67
DQ_A36	AK14	604.64
DQ_A37	AN13	729.25
DQ_A38	AH14	489.88
DQ_A39	AG14	412.52

DQS_A7	AL6	757.56
DQS_A16	AH9	572.24
DQ_A56	AG10	486.38
DQ_A57	AJ9	594.72
DQ_A58	AM3	962.48
DQ_A59	AM2	985.43
DQ_A60	AH10	527.32
DQ_A61	AE11	389.01
DQ_A62	AL5	795.23
DQ_A63	AM4	884.88

Table 7-4. MCH L _{PKG} Data for DDR	Channel A (Sheet 2 of 2)

Signal	Ball No.	L _{PKG} (mils)
DQS_A5	AM12	778.27
DQS_A14	AK12	610.59
DQ_A40	AE14	479.84
DQ_A41	AH13	531.53
DQ_A42	AN12	782.52
DQ_A43	AL11	752.83
DQ_A44	AE15	402.91
DQ_A45	AF13	478.90
DQ_A46	AJ12	582.64
DQ_A47	AM10	801.42
L		
DQS_A6	AL8	717.01
DQS_A15	AM7	800.86
DQ_A48	AE12	372.09
DQ_A49	AH11	523.86
DQ_A50	AG11	529.57
DQ_A51	AN5	937.56
DQ_A52	AG12	455.98
DQ_A53	AF12	416.30
DQ_A54	AM9	786.42
DQ_A55	AM6	895.98

Signal	Ball No.	L _{PKG} (mils)
DQS_A8	AJ16	544.33
DQS_A17	AF16	347.28
CB_A0	AE16	345.55
CB_A1	AH16	520.35
CB_A2	AL16	684.01
CB_A3	AK15	647.24
CB_A4	AE17	422.52
CB_A5	AG17	392.44
CB_A6	AM15	717.48
CB_A7	AG15	457.24

CMDCLK_A0	AG24	568.46
CMDCLK_A0#	AG23	518.54
CMDCLK_A1	AJ25	621.81
CMDCLK_A1#	AH25	559.13
CMDCLK_A2	AG26	559.53
CMDCLK_A2#	AF25	467.44
CMDCLK_A3	AE25	374.80
CMDCLK_A3#	AE24	338.03

7.3.3 MCH DDR Channel B Signal Package Trace Length Data

Table 7-5 provides the MCH package trace length information for channel B of the DDR memory interface.

Signal	Ball No.	L _{PKG} (mils)
DQS_B0	L30	658.35
DQS_B9	H31	785.27
DQ_B0	F33	950.79
DQ_B1	K30	747.99
DQ_B2	J32	780.83
DQ_B3	N25	415.39
DQ_B4	N27	453.90
DQ_B5	G32	885.31
DQ_B6	M29	583.27
DQ_B7	N26	440.24
DQS_B1	M31	687.95
DQS_B10	N29	534.96
DQ_B8	J33	833.11
DQ_B9	K32	791.81
DQ_B10	P27	440.12
DQ_B11	P25	375.55
DQ_B12	J31	776.77
DQ_B13	L31	739.37
DQ_B14	P26	424.17
DQ_B15	P28	499.29
DQS_B2	U33	696.85
DQS_B11	U31	606.69
DQ_B16	T29	504.05
DQ_B17	Т30	556.06
DQ_B18	U30	554.92
DQ_B19	T26	349.41
DQ_B20	R32	678.27
DQ_B21	T27	391.30
DQ_B22	V33	691.34
DQ_B23	V31	571.34

Table 7-5. MCH L _{PKG}	Data for DDR	Channel B (S	Sheet 1 of 2)

Signal	Ball No.	L _{PKG} (mils)
DQS_B3	R29	505.35
DQS_B12	R31	666.97
DQ_B24	P30	567.56
DQ_B25	P33	765.16
DQ_B26	R26	380.90
DQ_B27	T32	707.28
DQ_B28	N32	702.75
DQ_B29	P31	634.96
DQ_B30	R28	485.24
DQ_B31	T25	343.42
	•	•

DQS_B4	AE32	805.23
DQS_B13	AC30	669.21
DQ_B32	W27	407.40
DQ_B33	AE33	853.70
DQ_B34	AF31	824.01
DQ_B35	W25	625.51
DQ_B36	AA28	516.10
DQ_B37	AD32	749.21
DQ_B38	AG33	842.95
DQ_B39	W26	341.73

DQS_B5	AC31	791.22
DQS_B14	AB30	751.49
DQ_B40	AA29	684.05
DQ_B41	AB33	832.40
DQ_B42	V26	408.03
DQ_B43	AD31	819.76
DQ_B44	Y28	562.60
DQ_B45	AB32	810.43
DQ_B46	AB29	655.79
DQ_B47	V25	700.39

Table 7-5. MCH L_{PKG} Data for DDR Channel B (Sheet 2 of 2)

Signal	Ball No.	L _{PKG} (mils)
DQS_B6	AE28	628.50
DQS_B15	AD27	575.04
DQ_B48	Y25	288.31
DQ_B49	AB27	450.75
DQ_B50	AH32	881.06
DQ_B51	AH31	863.46
DQ_B52	AC28	532.28
DQ_B53	AA26	345.24
DQ_B54	AG30	788.23
DQ_B55	AH33	938.07

Signal	Ball No.	L _{PKG} (mils)
DQS_B8	W29	593.94
DQS_B17	Y30	674.13
CB_B0	V28	517.52
CB_B1	U25	365.90
CB_B2	Y31	723.03
CB_B3	AA33	796.89
CB_B4	U28	469.61
CB_B5	U27	443.46
CB_B6	AA31	652.24
CB_B7	AA32	753.11

DQS_B7	AE27	531.97
DQS_B16	AF28	626.65
DQ_B56	AJ30	807.44
DQ_B57	AG29	688.07
DQ_B58	AB25	463.23
DQ_B59	AA25	301.73
DQ_B60	AL32	908.78
DQ_B61	AJ31	804.49
DQ_B62	AC27	478.94
DQ_B63	AB26	356.85

CMDCLK_B0	J29	541.26
CMDCLK_B0#	J28	485.00
CMDCLK_B1	L28	518.31
CMDCLK_B1#	M28	506.53
CMDCLK_B2	J26	466.10
CMDCLK_B2#	K25	381.61
CMDCLK_B3	K27	580.63
CMDCLK_B3#	L27	557.72

7.3.4 MCH Hub Interface_B Signal Package Trace Length Data

Table 7-6 provides the MCH package trace length information for Hub Interface_B.

Signal	Ball No.	L _{PKG} (mils)
PSTRBF_B	G15	332.36
PSTRBS_B	H15	298.90
HI_B0	D16	481.42
HI_B1	G16	474.88
HI_B2	C17	543.11
HI_B3	C16	570.12
HI_B4	A17	674.05
HI_B5	A16	670.86
HI_B6	B14	595.98
HI_B7	D15	529.61
HI_B20	F14	413.11

Table 7-6. MCH L_{PKG} Data for Hub Interface_B

Signal	Ball No.	L _{PKG} (mils)
PUSTRBF_B	A12	665.47
PUSTRBS_B	B12	644.33
HI_B8	C14	590.12
HI_B9	F13	431.77
HI_B10	A13	692.75
HI_B11	C13	565.39
HI_B12	D12	517.09
HI_B13	E12	503.11
HI_B14	C11	610.31
HI_B15	J14	268.74
HI_B21	G13	384.96

7.3.5 MCH Hub Interface_C Signal Package Trace Length Data

Table 7-7 provides the MCH package trace length information for Hub Interface_C.

Table 7-7. MCH L _{PKG}	Data for Hub Interface_0	2
---------------------------------	--------------------------	---

Signal	Ball No.	L _{PKG} (mils)
PSTRBF_C	C23	679.64
PSTRBS_C	B23	731.06
HI_C0	D22	633.74
HI_C1	B24	756.49
HI_C2	G18	359.53
HI_C3	C22	694.84
HI_C4	E20	494.01
HI_C5	F19	393.42
HI_C6	D21	608.15
HI_C7	E21	515.27
HI_C20	H18	293.19

Signal	Ball No.	L _{PKG} (mils)
PUSTRBF_C	D18	513.38
PUSTRBS_C	E17	463.42
HI_C8	D19	555.79
HI_C9	A20	717.12
HI_C10	B20	664.29
HI_C11	C19	615.08
HI_C12	B18	649.05
HI_C13	C18	560.35
HI_C14	E18	452.52
HI_C15	F17	378.19
HI_C21	F16	415.04

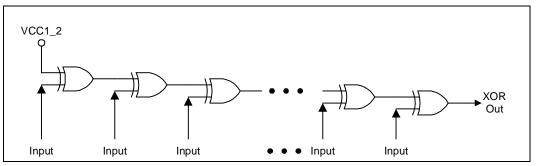
7.3.6 MCH Hub Interface_D Signal Package Trace Length Data

Table 7-8 provides the MCH package trace length information for Hub Interface_D.

Signal	Ball No.	L _{PKG} (mils)
PSTRBF_D	D27	717.68
PSTRBS_D	D26	730.08
HI_D0	D28	772.60
HI_D1	G25	562.64
HI_D2	G26	536.77
HI_D3	F26	592.64
HI_D4	G24	513.82
HI_D5	A27	901.06
HI_D6	H24	415.12
HI_D7	C26	741.30
HI_D20	E27	698.38

[1	I		
Signal	Ball No.	L _{PKG} (mils)		
PUSTRBF_D	B25	758.58		
PUSTRBS_D	C25	714.68		
HI_D8	G22	492.64		
HI_D9	E24	587.16		
HI_D10	A25	814.64		
HI_D11	D24	617.44		
HI_D12	A24	807.24		
HI_D13	E23	525.12		
HI_D14	F23	492.87		
HI_D15	F22	495.63		
HI_D21	H21	499.01		

This page is intentionally left blank.


Testability

For Automated Test Equipment (ATE) the MCH supports XOR-tree testing. XOR-tree testing allows board-level interconnections to be tested. An XOR-Tree is a chain of XOR gates, with each having one input pin or one bi-directional pin (used as an input pin only) connected to it.

int_{el} Testability

8.1 XORMODE# Usage

The XORMODE# is a test input. The MCH enters XORMODE# for board level testing. When the following conditions are met, the MCH will be in XOR-test. If any of the following are not met, then XOR-test will not be enabled.

- 1. Assert PWRGD.
- 2. Assert RSTIN# for 128 clocks beyond the assertion of PWRGD. RSTIN# may be held asserted before PWRGD is asserted.
- 3. Deassert RSTIN#.
- 4. TSTIN# must not be used to put MCH in some test mode. If TSTIN# is used to put MCH in a test mode, then a full reset must be done before asserting XORMODE#. It is illegal to run a TSTIN# test, and then immediately assert XORMODE#, since the TSTIN# test may leave the MCH in an unknown state.
- 5. Assert XORMODE# and hold asserted.
- 6. The clocks may be held at the 0 or 1 state; or be fully running. Since HCLKINP/HCLKINN is a differential pair, the 2 clock inputs should be held in opposite states.
- 7. As long as XORMODE# is asserted the MCH is in XOR-test. As soon as XORMODE# is asserted and 2 HCLKINP/HCLKINN cycles have occurred, all the XOR chains are functional.
- 8. After deasserting XORMODE#, the MCH should be reset before any other testing is done.

8.2 XOR Chains

The XOR chain outputs (XOR chains 8 through 1) are visible on HI_A[7:0]. In Long XOR chain mode the delay through the 4 pad ring chains (chains 1, 2, 3, 4) may be observed on HI_A4.

RSTIN# is not part of any XOR chain. This is in addition to HI_A[7:0]. The chain partitioning is listed in Table 8-1. Note that for chain 1 to work, RCVEN_A must be held at logic one, and for chain 3 to work, RCVEN_B must be held at logic one as well.

Chain #1	Chain #2	Chain #3	Chain #4	Chain #5	Chain #6	Chain #7	Chain #8
CS A5#	WE A#	CS_B1#	WE B#	HI_B14	HI_A10	HD57#	RSP#
 CS_A3#	CAS_A#	CS_B0#	CAS_B#	 HI_B13	PSTRBF_A	HD60#	HA28#
 CS_A7#	RAS_A#	CS_B5#	 RAS_B#	 HI_B12	PSTRBS_A	HD62#	HA26#
CS_A6#	RCENOUT_A	CS_B3#	RCENOUT_B	HI_B21	HI_A8	HD55#	HA19#
				HI_B20	HI_A11	HD43#	HA24#
DQ_A56	DQ_A25	DQ_B58	DQ_B24	HI_B7	HI_A9	HD41#	HA16#
DQ_A57	DQ_A24	DQ_B59	DQ_B25	PUSTRBF_B		HD47#	HA12#
DQS_A16	DQS_A12	DQS_B16	DQS_B12	PUSTRBS_B		HD32#	HA6#
DQ_A63	DQ_A28	DQ_B62	DQ_B29	HI_B15		HD36#	HA3#
DQ_A60	DQ_A29	DQ_B63	DQ_B28	HI_B16		HD28#	HREQ1#
DQ_A61	DQ_A31	DQ_B61	DQ_B31	HI_B10		HD29#	DP0#
DQ_A62	DQ_A30	DQ_B60	DQ_B30	HI_B11		HD20#	DEFER#
DQS_A7	DQS_A3	DQS_B7	DQS_B3	HI_B9		HD19#	BNR#
DQ_A59	DQ_A26	DQ_B56	DQ_B27	HI_B8		HD7#	HLOCK#
DQ_A58	DQ_A27	DQ_B57	DQ_B26	HI_B18		HD15#	BPRI#
				HI_B6		HD10#	DP2#
DQ_A50	DQ_A10	DQ_B49	DQ_B9	PSTRBF_B		DBI0#	RS1#
DQ_A49	DQ_A11	DQ_B48	DQ_B8	PSTRBS_B		HD13#	HREQ3#
DQS_A15	DQS_A10	DQS_B15	DQS_B10	HI_B3		HDSTBN0#	HA13#
DQ_A54	DQ_A15	DQ_B52	DQ_B13	HI_B0		HDSTBP0#	HA8#
DQ_A52	DQ_A13	DQ_B53	DQ_B12	HI_B5		HD2#	HA14#
DQ_A53	DQ_A12	DQ_B54	DQ_B14	HI_B1		HD12#	HA33#
DQ_A55	DQ_A14	DQ_B55	DQ_B15	HI_B4		HD24#	HA32#
DQS_A6	DQS_A1	DQS_B6	DQS_B1	HI_B17		HDSTBN1#	HA21#
DQ_A48	DQ_A8	DQ_B51	DQ_B10	HI_B2		HDSTBP1#	HA30#
DQ_A51	DQ_A9	DQ_B50	DQ_B11	HI_C12		HD22#	IERR#
				HI_C13		HD31#	BINIT#
CS_A2#	CMDCLK_A1#	CS_B7#	CMDCLK_B3#	HI_C21		HD35#	BREQ0#
CS_A4#	CMDCLK_A1	CS_B4#	CMDCLK_B3	PUSTRBF_C		HDSTBN2#	HA31#
CS_A0#	CMDCLK_A0#	CS_B2#	CMDCLK_B1#	PUSTRBS_C		HDSTBP2#	HA35#
CS_A1#	CMDCLK_A0	CS_B6#	CMDCLK_B1	HI_C9		DBI2#	HA23#
				HI_C15		HD49#	HA20#
DQ_A42	DQ_A0	DQ_B32	DQ_B2	HI_C11		HD63#	HA11#

Table 8-1. XOR Chains (Sheet 1 of 3)

Testability

Table 6	-1. XOR Chain	is (Sheet 2 d	n 3)				
Chain #1	Chain #2	Chain #3	Chain #4	Chain #5	Chain #6	Chain #7	Chain #8
DQ_A41	DQ_A1	DQ_B35	DQ_B0	HI_C14		HDSTBN3#	HA10#
DQS_A14	DQS_A9	DQS_B13	DQS_B9	HI_C10		HDSTBP3#	HA4#
DQ_A46	DQ_A5	DQ_B36	DQ_B6	HI_C8		HD48#	HREQ0#
DQ_A44	DQ_A4	DQ_B39	DQ_B5	HI_C16		HD50#	RS2#
DQ_A45	DQ_A7	DQ_B38	DQ_B7	HI_C6		HD52#	HTRDY#
DQ_A47	DQ_A6	DQ_B37	DQ_B4	HI_C4		HD51#	RS0#
DQS_A5	DQS_A0	DQS_B4	DQS_B0	HI_C3		HD40#	DRDY#
DQ_A40	DQ_A3	DQ_B34	DQ_B1	PSTRBF_C		HD44#	HITM#
DQ_A43	DQ_A2	DQ_B33	DQ_B3	PSTRBS_C		HD23#	DP3#
				HI_C2		HD27#	CPURST#
DQ_A35	MA_A0	DQ_B40	BA_B1	HI_C7		HD16#	DP1#
DQ_A34	MA_A6	DQ_B42	MA_B2	HI_C0		HD11#	HREQ4#
DQS_A13	MA_A10	DQS_B14	MA_B4	HI_C5		HD8#	HA15#
DQ_A38	MA_A1	DQ_B44	BA_B0	HI_C20		HD9#	HADSTB0#
DQ_A39	BA_A1	DQ_B47	MA_B1	HI_C1		HD4#	HA9#
DQ_A37		DQ_B45		HI_C18		HD3#	HA17#
DQ_A36	CMDCLK_A2#	DQ_B46	CMDCLK_B2#	HI_C17		HD1#	HA27#
DQS_A4	CMDCLK_A2	DQS_B5	CMDCLK_B2	HI_D21		HD14#	HADSTB1#
DQ_A33	CMDCLK_A3#	DQ_B43	CMDCLK_B0#	HI_D12		HD17#	HA25#
DQ_A32	CMDCLK_A3	DQ_B41	CMDCLK_B0	HI_D11		HD21#	HA34#
				HI_D10		HD26#	AP0#
AM18	MA_A3	CKE_B	MA_B3	PUSTRBF_D		HD30#	AP1#
CKE_A	MA_A7	K33	MA_B10	PUSTRBS_D		HD34#	HA22#
	MA_A12		MA_B0	HI_D15		HD33#	HA29#
CB_A1	MA_A2	CB_B0	MA_B6	HI_D13		HD42#	HA18#
CB_A2	MA_A9	CB_B1	MA_B7	HI_D8		HD39#	HA7#
DQS_A17		DQS_B17		HI_D14		HD46#	HA5#
CB_A5	MA_A4	CB_B4	MA_B5	HI_D9		HD54#	HREQ2#
CB_A4	MA_A11	CB_B5	MA_B8	HI_D18		HD53#	ADS#
CB_A7	MA_A5	CB_B6	MA_B11	HI_D7		HD58#	DBSY#
CB_A6	MA_A8	CB_B7	MA_B9	HI_D4		HD59#	HIT#
DQS_A8	BA_A0	DQS_B8	MA_B12	HI_D3		HD65#	
CB_A3		CB_B3		HI_D1		DBI3#	
CB_A0		CB_B2		PSTRBF_D		HD61#	
				PSTRBS_D		HD55#	
DQ_A17		DQ_B16		HI_D0		HD38#	
DQ_A16		DQ_B19		HI_D2		HD37#	
DQS_A11		DQS_B11		HI_D20		HD25#	
DQ_A21		DQ_B21		HI_D6		HD18#	
DQ_A20		DQ_B20		HI_D16		DBI1#	

Table 8-1. XOR Chains (Sheet 2 of 3)

Chain #1	Chain #2	Chain #3	Chain #4	Chain #5	Chain #6	Chain #7	Chain #8
DQ_A22		DQ_B23		HI_D17		HD5#	
DQ_A23		DQ_B22		HI_D5		HD6#	
DQS_A2		DQS_B2		SMB_CLK		HD0#	
DQ_A18		DQ_B18		SMB_DATA			
DQ_A19		DQ_B17					
Out = HI_A0	Out = HI_A1	Out = HI_A2	Out = HI_A3	Out = HI_A4	Out = HI_A5	Out = HI_A6	Out = HI_A7

Table 8-1. XOR Chains (Sheet 3 of 3)